» 
Arabic Bulgarian Chinese Croatian Czech Danish Dutch English Estonian Finnish French German Greek Hebrew Hindi Hungarian Icelandic Indonesian Italian Japanese Korean Latvian Lithuanian Malagasy Norwegian Persian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swedish Thai Turkish Vietnamese
Arabic Bulgarian Chinese Croatian Czech Danish Dutch English Estonian Finnish French German Greek Hebrew Hindi Hungarian Icelandic Indonesian Italian Japanese Korean Latvian Lithuanian Malagasy Norwegian Persian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swedish Thai Turkish Vietnamese

definitions - Chordate

chordate (adj.)

1.of or relating to or characteristic of the Chordata

chordate (n.)

1.any animal of the phylum Chordata having a notochord or spinal column

   Advertizing ▼

definition (more)

definition of Wikipedia

see also - Chordate

chordate (adj.)

Chordata, phylum Chordata

   Advertizing ▼

phrases

analogical dictionary



Wikipedia

Chordate

                   
Chordata
Temporal range: Early Cambrian – Recent, 540–0 Ma
Pg
The X-ray tetra (Pristella maxillaris), is one of the few chordates with a visible backbone. The spinal cord is housed within its backbone.
Scientific classification e
Kingdom: Animalia
Superphylum: Deuterostomia
Phylum: Chordata
Bateson, 1885
Classes

See below

Chordates, members of the phylum Chordata, are deuterostome animals possessing a notochord, a hollow dorsal nerve cord, pharyngeal slits, an endostyle, and a post-anal tail for at least some period of their life cycles. Taxonomically, the phylum includes the subphyla Vertebrata, including mammals (and thus humans), fish, amphibians, reptiles, birds; Tunicata, including salps and sea squirts; and Cephalochordata, comprising the lancelets.

The phylum Hemichordata including the acorn worms has been presented as a fourth chordate subphylum, but it now is usually treated as a separate phylum. It, along with the echinoderm phylum, including starfish, sea urchins, and sea cucumbers and their, kin are the chordates closest relatives. Primitive chordates are known from at least as early as the Cambrian explosion.

There are more than 60,000 living species of chordates, about half of which are bony fish of the class osteichthyes. The world's largest animal, the blue whale, and fastest animal, the peregrine falcon, are chordates.

Contents

  Overview of affinities

Tunicate larvae have both a notochord and a nerve cord which are lost in adulthood. Cephalochordates have a notochord and a nerve cord (but no brain or specialist sensory organs) and a very simple circulatory system. Craniates are the only subphylum whose members have skulls. In all craniates except for hagfish, the dorsal hollow nerve cord is surrounded with cartilaginous or bony vertebrae and the notochord is generally reduced; hence, hagfish are not universally regarded as vertebrates, though recent DNA comparisons suggest that they are in fact vertebrates. The chordates and three sister phyla, the Hemichordata, the Echinodermata and the Xenoturbellida, make up the deuterostomes, one of the two superphyla that encompass all fairly complex animals.

Attempts to work out the evolutionary relationships of the chordates have produced several hypotheses. The current consensus is that chordates are monophyletic, meaning that the Chordata include all and only the descendants of a single common ancestor which is itself a chordate, and that craniates' nearest relatives are cephalochordates. All of the earliest chordate fossils have been found in the Early Cambrian Chengjiang fauna, and include two species that are regarded as fish, which implies they are vertebrates. Because the fossil record of chordates is poor, only molecular phylogenetics offers a reasonable prospect of dating their emergence. However, the use of molecular phylogenetics for dating evolutionary transitions is controversial.

It has also proved difficult to produce a detailed classification within the living chordates. Attempts to produce evolutionary "family trees" give results that differ from traditional classes because several of those classes are not monophyletic. As a result, vertebrate classification is in a state of flux.

  Definition

1 = bulge in spinal cord ("brain")
4 = post-anal tail
5 = anus
9 = space above pharynx
11 = pharynx
13 = oral cirri
14 = mouth opening
16 = light sensor
17 = nerves
19 = hepatic caecum (liver-like sack)
Anatomy of the cephalochordate Amphioxus. Bolded items are components of all chordates at some point in their lifetimes, and distinguish them from other phyla.

Chordates form a phylum of creatures that are based on a bilateral body plan,[1] and is defined by having at some stage in their lives all of the following:[2]

  • A notochord, in other words a fairly stiff rod of cartilage that extends along the inside of the body. Among the vertebrate sub-group of chordates the notochord develops into the spine, and in wholly aquatic species this helps the animal to swim by flexing its tail.
  • A dorsal neural tube. In fish and other vertebrates this develops into the spinal cord, the main communications trunk of the nervous system.
  • Pharyngeal slits. The pharynx is the part of the throat immediately behind the mouth. In fish the slits are modified to form gills, but in some other chordates they are part of a filter-feeding system that extracts particles of food from the water in which the animals live.
  • Post-anal tail. A muscular tail that extends backwards behind the anus.
  • An endostyle. This is a groove in the ventral wall of the pharynx. In filter-feeding species it produces mucus to gather food particles, which helps in transporting food to the esophagus.[3] It also stores iodine, and may be a precursor of the vertebrate thyroid gland.[2]

  Subdivisions

  Craniata

  Craniate: Hagfish

Craniates, one of the three subdivisions of chordates, have distinct skulls - including hagfish, which have no vertebrae. Michael J. Benton comments, "craniates are characterized by their heads, just as chordates, or possibly all deuterostomes, are by their tails." [4]

Most are vertebrates, in which the notochord is replaced by the spinal column. [5]

This consists of a series of bony or cartilaginous cylindrical vertebrae, generally with neural arches that protect the spinal cord and with projections that link the vertebrae. Hagfish have incomplete braincases and no vertebrae, and are therefore not regarded as vertebrates,[6] but as members of the craniates, the group from which vertebrates are thought to have evolved.[7] The position of lampreys is ambiguous. They have complete braincases and rudimentary vertebrae, and therefore may be regarded as vertebrates and true fish.[8] However, molecular phylogenetics, which uses biochemical features to classify organisms, has produced both results that group them with vertebrates and others that group them with hagfish.[9]

  Cephalochordata: lancelets

  Cephalochordate: Lancelet

Cephalochordates are small, "vaguely fish-shaped" animals that lack brains, clearly defined heads and specialized sense organs.[10] These burrowing filter-feeders may be either the closest living relatives of craniates or surviving members of the group from which all other chordates evolved.[11][12]

  Urochordata: tunicates

  Tunicates: sea squirts

Most tunicates appear as adults in two major forms, both of which are soft-bodied filter-feeders that lack the standard features of chordates: "sea squirts" are sessile and consist mainly of water pumps and filter-feeding apparatus;[13] salps float in mid-water, feeding on plankton, and have a two-generation cycle in which one generation is solitary and the next forms chain-like colonies.[14] However, all tunicate larvae have the standard chordate features, including long, tadpole-like tails; they also have rudimentary brains, light sensors and tilt sensors.[13] The third main group of tunicates, Appendicularia (also known as Larvacea) retain tadpole-like shapes and active swimming all their lives, and were for a long time regarded as larvae of sea squirts or salps.[15] Because of their larvae's long tails tunicates are also called urochordates ("tail chordates").[13]

  Closest nonchordate relatives

  Hemichordates

  Enteropneust hemichordate: Balanoglossus

Hemichordates ("half (½) chordates") have some features similar to those of chordates: branchial openings that open into the pharynx and look rather like gill slits; stomochords, similar in composition to notochords, but running in a circle round the "collar", which is ahead of the mouth; and a dorsal nerve cord — but also a smaller ventral nerve cord.

There are two living groups of hemichordates. The solitary enteropneusts, commonly known as "acorn worms", have long proboscises and worm-like bodies with up to 200 branchial slits, are up to 2.5 metres (8.2 ft) long, and burrow though seafloor sediments. Pterobranchs are colonial animals, often less than 1 millimetre (0.039 in) long individually, whose dwellings are interconnected. Each filter feeds by means of a pair of branched tentacles, and has a short, shield-shaped proboscis. The extinct graptolites, colonial animals whose fossils look like tiny hacksaw blades, lived in tubes similar to those of pterobranchs.[16]

  Echinoderms

  Echinoderm: starfish

Echinoderms differ from chordates and their other relatives in three conspicuous ways: instead of having bilateral symmetry, they have radial symmetry, meaning their body pattern is shaped like a wheel; they have tube feet; and their bodies are supported by skeletons made of calcite, a material not used by chordates. Their hard, calcified shells keep their bodies well protected from the environment, and these skeletons enclose their bodies, but are also covered by thin skins. The feet are powered by another unique feature of echinoderms, a water vascular system of canals that also functions as a "lung" and are surrounded by muscles that act as pumps. Crinoids look rather like flowers, and use their feather-like arms to filter food particles out of the water; most live anchored to rocks, but a few can move very slowly. Other echinoderms are mobile and take a variety of body shapes, for example starfish, sea urchins and sea cucumbers.[17]

  Origins

The majority of animals more complex than jellyfish and other Cnidarians are split into two groups, the protostomes and deuterostomes, and chordates are deuterostomes.[18] It seems very likely the 555 million-year-old Kimberella was a member of the protostomes.[19][20] If so, this means the protostome and deuterostome lineages must have split some time before Kimberella appeared — at least 558 million years ago, and hence well before the start of the Cambrian 542 million years ago.[18] The Ediacaran fossil Ernietta, from about 549 to 543 million years ago, may represent a deuterostome animal.[21]

  Haikouichthys, from about 518 million years ago in China, may be the earliest known fish.[22]

Fossils of one major deuterostome group, the echinoderms (whose modern members include starfish, sea urchins and crinoids), are quite common from the start of the Cambrian, 542 million years ago.[23] The Mid Cambrian fossil Rhabdotubus johanssoni has been interpreted as a pterobranch hemichordate.[24] Opinions differ about whether the Chengjiang fauna fossil Yunnanozoon, from the earlier Cambrian, was a hemichordate or chordate.[25][26] Another fossil, Haikouella lanceolata, also from the Chengjiang fauna, is interpreted as a chordate and possibly a craniate, as it shows signs of a heart, arteries, gill filaments, a tail, a neural chord with a brain at the front end, and possibly eyes — although it also had short tentacles round its mouth.[26] Haikouichthys and Myllokunmingia, also from the Chengjiang fauna, are regarded as fish.[22][27] Pikaia, discovered much earlier but from the Mid Cambrian Burgess Shale, is also regarded as a primitive chordate.[28] On the other hand fossils of early chordates are very rare, since non-vertebrate chordates have no bones or teeth, and only one has been reported for the rest of the Cambrian.[29]

The evolutionary relationships between the chordate groups and between chordates as a whole and their closest deuterostome relatives have been debated since 1890. Studies based on anatomical, embryological, and paleontological data have produced different "family trees". Some closely linked chordates and hemichordates, but that idea is now rejected.[3] Combining such analyses with data from a small set of ribosome RNA genes eliminated some older ideas, but open the possibility that tunicates (urochordates) are "basal deuterostomes", surviving members of the group from which echinoderms, hemichordates and chordates evolved.[31] Some researchers believe that, within the chordates, craniates are most closely related to cephalochordates, but there are also reasons for regarding tunicates (urochordates) as craniates' closest relatives.[3][32] One other phylum, Xenoturbellida, appears to be basal within the deuterostomes, closer to the original deuterostomes than to the chordates, echinoderms and hemichordates.[30]

Since chordates have left a poor fossil record, attempts have been made to calculate the key dates in their evolution by molecular phylogenetics techniques - by analysing biochemical differences, mainly in RNA. One such study suggested deuterostomes arose before 900 million years ago and the earliest chordates around 896 million years ago.[32] However, molecular estimates of dates often disagree with each other and with the fossil record,[32] and their assumption that the molecular clock runs at a known constant rate has been challenged.[33][34]

  Classification

  Taxonomy

  A skeleton of the blue whale, the world's largest animal, outside the Long Marine Laboratory at the University of California, Santa Cruz
  A peregrine falcon, the world's fastest animal

The following schema is from the third edition of Vertebrate Palaeontology.[35] The invertebrate chordate classes are from Fishes of the World.[36] While it is structured so as to reflect evolutionary relationships (similar to a cladogram), it also retains the traditional ranks used in Linnaean taxonomy.

  Phylogeny

Chordates


Cladogram of the Chordate phylum. Lines show probable evolutionary relationships, including extinct taxa, which are denoted with a dagger, †. Some are invertebrates. The positions (relationships) of the Lancelet, Tunicate, and Craniata clades are as reported[37] in the scientific journal Nature.
Chordata 
 Cephalochordata

 Amphioxus



Olfactores 
Tunicata 

 Appendicularia (formerly Larvacea)



 Thaliacea 



 Ascidiacea 



 Craniata 

Myxini


 Vertebrata 

 Conodonta



 Cephalaspidomorphi



 Hyperoartia (Petromyzontida)



 Pteraspidomorphi


 Gnathostomata 

 Placodermi



 Chondrichthyes


 Teleostomi 

 Acanthodii


 Osteichthyes 

 Actinopterygii


 Sarcopterygii 
void
 Tetrapoda 

 Amphibia


 Amniota 

 Mammalia


 Sauropsida 
void

 Lepidosauromorpha (lizards, snakes, tuatara, and their extinct relatives)





 Archosauromorpha (crocodiles, birds, and their extinct relatives)















  See also

  References

  1. ^ Valentine, J.W. (2004). On the Origin of Phyla. Chicago: University Of Chicago Press. p. 7. ISBN 0-226-84548-6. "Classifications of organisms in hierarchical systems were in use by the seventeenth and eighteenth centuries. Usually organisms were grouped according to their morphological similarities as perceived by those early workers, and those groups were then grouped according to their similarities, and so on, to form a hierarchy"
  2. ^ a b Rychel, A.L., Smith, S.E., Shimamoto, H.T., and Swalla, B.J. (2006). "Evolution and Development of the Chordates: Collagen and Pharyngeal Cartilage". Molecular Biology and Evolution 23 (3): 541–549. DOI:10.1093/molbev/msj055. PMID 16280542. 
  3. ^ a b c d Ruppert, E. (2005). "Key characters uniting hemichordates and chordates: homologies or homoplasies?". Canadian Journal of Zoology 83: 8–23. DOI:10.1139/Z04-158. http://article.pubs.nrc-cnrc.gc.ca/RPAS/RPViewDoc?_handler_=HandleInitialGet&articleFile=z04-158.pdf&journal=cjz&volume=83. Retrieved 2008-09-22. 
  4. ^ Benton, M.J. (2000). Vertebrate Palaeontology: Biology and Evolution. Blackwell Publishing. pp. 12–13. ISBN 0-632-05614-2. http://books.google.com/?id=PQuKO7xqjNQC&dq=vertebrate&printsec=frontcover. Retrieved 2008-09-22. 
  5. ^ "Morphology of the Vertebrates". University of California Museum of Paleontology. http://www.ucmp.berkeley.edu/vertebrates/vertmm.html. Retrieved 2008-09-23. 
  6. ^ "Introduction to the Myxini". University of California Museum of Paleontology. http://www.ucmp.berkeley.edu/vertebrates/basalfish/myxini.html. Retrieved 2008-10-28. 
  7. ^ Campbell, N.A. and Reece, J.B. (2005). Biology (7th ed.). San Francisco, CA: Benjamin Cummings. ISBN 0-8053-7095-1. 
  8. ^ "Introduction to the Petromyzontiformes". University of California Museum of Paleontology. http://www.ucmp.berkeley.edu/vertebrates/basalfish/petro.html. Retrieved 2008-10-28. 
  9. ^ Shigehiro Kuraku, S., Hoshiyama, D., Katoh, K., Suga, H, and Miyata, T. (December 1999). "Monophyly of Lampreys and Hagfishes Supported by Nuclear DNA-Coded Genes". Journal of Molecular Evolution 49 (6): 729–735. DOI:10.1007/PL00006595. PMID 10594174. 
  10. ^ Benton, M.J. (2000). Vertebrate Palaeontology: Biology and Evolution. Blackwell Publishing. p. 6. ISBN 0-632-05614-2. http://books.google.com/?id=PQuKO7xqjNQC&dq=vertebrate&printsec=frontcover. Retrieved 2008-09-22. 
  11. ^ Gee, H. (June 2008). "Evolutionary biology: The amphioxus unleashed". Nature 453 (7198): 999–1000. Bibcode 2008Natur.453..999G. DOI:10.1038/453999a. PMID 18563145. http://www.nature.com/nature/journal/v453/n7198/full/453999a.html. Retrieved 2008-09-22. 
  12. ^ "Branchiostoma". Lander University. http://webs.lander.edu/rsfox/invertebrates/branchiostoma.html. Retrieved 2008-09-23. 
  13. ^ a b c Benton, M.J. (2000). Vertebrate Palaeontology: Biology and Evolution. Blackwell Publishing. p. 5. ISBN 0-632-05614-2. http://books.google.com/?id=PQuKO7xqjNQC&dq=vertebrate&printsec=frontcover. Retrieved 2008-09-22. 
  14. ^ "Animal fact files: salp". BBC. http://www.bbc.co.uk/nature/blueplanet/factfiles/jellies/salp_bg.shtml. Retrieved 2008-09-22. 
  15. ^ "Appendicularia" (PDF). Australian Government Department of the Environment, Water, Heritage and the Arts. http://www.environment.gov.au/biodiversity/abrs/publications/electronic-books/pubs/tunicates/05-appendicularia.pdf. Retrieved 2008-10-28. 
  16. ^ "Introduction to the Hemichordata". University of California Museum of Paleontology. http://www.ucmp.berkeley.edu/chordata/hemichordata.html. Retrieved 2008-09-22. 
  17. ^ Cowen, R. (2000). History of Life (3rd ed.). Blackwell Science. p. 412. ISBN 0-632-04444-6. 
  18. ^ a b Erwin, Douglas H.; Eric H. Davidson (July 1, 2002). "The last common bilaterian ancestor". Development 129 (13): 3021–3032. PMID 12070079. http://dev.biologists.org/cgi/content/full/129/13/3021. 
  19. ^ New data on Kimberella, the Vendian mollusc-like organism (White sea region, Russia): palaeoecological and evolutionary implications (2007), "Fedonkin, M.A.; Simonetta, A; Ivantsov, A.Y.", in Vickers-Rich, Patricia; Komarower, Patricia, The Rise and Fall of the Ediacaran Biota, Special publications, 286, London: Geological Society, pp. 157–179, DOI:10.1144/SP286.12, ISBN 9781862392335, OCLC 191881597 156823511 191881597 
  20. ^ Butterfield, N.J. (2006). "Hooking some stem-group "worms": fossil lophotrochozoans in the Burgess Shale". Bioessays 28 (12): 1161–6. DOI:10.1002/bies.20507. PMID 17120226. 
  21. ^ Dzik , J. (June 1999). "Organic membranous skeleton of the Precambrian metazoans from Namibia". Geology 27 (6): 519–522. Bibcode 1999Geo....27..519D. DOI:10.1130/0091-7613(1999)027<0519:OMSOTP>2.3.CO;2. http://geology.geoscienceworld.org/cgi/content/abstract/27/6/519. Retrieved 2008-09-22.  Ernettia is from the Kuibis formation, approximate date given by Waggoner, B. (2003). "The Ediacaran Biotas in Space and Time". Integrative and Comparative Biology 43 (1): 104–113. DOI:10.1093/icb/43.1.104. PMID 21680415. http://icb.oxfordjournals.org/cgi/content/full/43/1/104. Retrieved 2008-09-22. 
  22. ^ a b Shu, D-G., Conway Morris, S., and Han, J (January 2003). "Head and backbone of the Early Cambrian vertebrate Haikouichthys". Nature 421 (6922): 526–529. Bibcode 2003Natur.421..526S. DOI:10.1038/nature01264. PMID 12556891. http://www.nature.com/nature/journal/v421/n6922/abs/nature01264.html. Retrieved 2008-09-21. 
  23. ^ Bengtson, S. (2004). Early skeletal fossils. In Lipps, J.H., and Waggoner, B.M.. "Neoproterozoic-Cambrian Biological Revolutions" (PDF). Paleontological Society Papers 10: 67–78. http://www.cosmonova.org/download/18.4e32c81078a8d9249800021554/Bengtson2004ESF.pdf. Retrieved 2008-07-18. 
  24. ^ Bengtson, S., and Urbanek, A. (October 2007). "Rhabdotubus, a Middle Cambrian rhabdopleurid hemichordate". Lethaia 19 (4): 293–308. DOI:10.1111/j.1502-3931.1986.tb00743.x. http://www3.interscience.wiley.com/journal/120025616/abstract. Retrieved 2008-09-23. 
  25. ^ Shu, D., Zhang, X. and Chen, L. (April 1996). "Reinterpretation of Yunnanozoon as the earliest known hemichordate". Nature 380 (6573): 428–430. Bibcode 1996Natur.380..428S. DOI:10.1038/380428a0. http://www.nature.com/nature/journal/v380/n6573/abs/380428a0.html. Retrieved 2008-09-23. 
  26. ^ a b Chen, J-Y., Hang, D-Y., and Li, C.W. (December 1999). "An early Cambrian craniate-like chordate". Nature 402 (6761): 518–522. Bibcode 1999Natur.402..518C. DOI:10.1038/990080. http://www.nature.com/nature/journal/v402/n6761/abs/402518a0.html. Retrieved 2008-09-23. 
  27. ^ Shu, D-G., Conway Morris, S., and Zhang, X-L. (November 1999). "Lower Cambrian vertebrates from south China" (PDF). Nature 402 (6757): 42. Bibcode 1999Natur.402...42S. DOI:10.1038/46965. http://www.bios.niu.edu/davis/bios458/Shu1.pdf. Retrieved 2008-09-23. 
  28. ^ Shu, D-G., Conway Morris, S., and Zhang, X-L. (November 1996). "A Pikaia-like chordate from the Lower Cambrian of China". Nature 384 (6605): 157–158. Bibcode 1996Natur.384..157S. DOI:10.1038/384157a0. http://www.nature.com/nature/journal/v384/n6605/abs/384157a0.html. Retrieved 2008-09-23. 
  29. ^ Conway Morris, S. (2008). "A Redescription of a Rare Chordate, Metaspriggina walcotti Simonetta and Insom, from the Burgess Shale (Middle Cambrian), British Columbia, Canada". Journal of Paleontology 82 (2): 424–430. DOI:10.1666/06-130.1. http://jpaleontol.geoscienceworld.org/cgi/content/extract/82/2/424. Retrieved 2009-04-28. 
  30. ^ a b Perseke M, Hankeln T, Weich B, Fritzsch G, Stadler PF, Israelsson O, Bernhard D, Schlegel M. (2007) "The mitochondrial DNA of Xenoturbella bocki: genomic architecture and phylogenetic analysis". Theory Biosci. 126(1):35–42. Available online at [1]
  31. ^ Winchell, C.J., Sullivan, J., Cameron, C.B., Swalla, B.J., and Mallatt, J. (May 1, 2002). "Evaluating Hypotheses of Deuterostome Phylogeny and Chordate Evolution with New LSU and SSU Ribosomal DNA Data". Molecular Biology and Evolution 19 (5): 762–776. PMID 11961109. http://mbe.oxfordjournals.org/cgi/content/full/19/5/762#MBEV-19-05-09-SWALLA1. Retrieved 2008-09-23. 
  32. ^ a b c Blair, J.E., and S. Blair Hedges, S.B. (2005). "Molecular Phylogeny and Divergence Times of Deuterostome Animals". Molecular Biology and Evolution 22 (11): 2275–2284. DOI:10.1093/molbev/msi225. PMID 16049193. http://mbe.oxfordjournals.org/cgi/content/full/22/11/2275. Retrieved 2008-09-23. 
  33. ^ Ayala, F.J. (1999). "Molecular clock mirages". BioEssays 21 (1): 71–75. DOI:10.1002/(SICI)1521-1878(199901)21:1<71::AID-BIES9>3.0.CO;2-B. PMID 10070256. http://www3.interscience.wiley.com/cgi-bin/abstract/60000186/ABSTRACT?CRETRY=1&SRETRY=0. 
  34. ^ Schwartz, J. H. and Maresca, B. (2006). "Do Molecular Clocks Run at All? A Critique of Molecular Systematics". Biological Theory 1 (4): 357–371. DOI:10.1162/biot.2006.1.4.357. 
  35. ^ Benton, M.J. (2004). Vertebrate Palaeontology, Third Edition. Blackwell Publishing, 472 pp. The classification scheme is available online
  36. ^ Nelson, J. S. (2006). Fishes of the World (4th ed.). New York: John Wiley and Sons, Inc. pp. 601 pp.. ISBN 0-471-25031-7. 
  37. ^ Putnam, H.; Butts, T.; Ferrier, E.; Furlong, F.; Hellsten, U.; Kawashima, T.; Robinson-Rechavi, M.; Shoguchi, E. et al. (Jun 2008). "The amphioxus genome and the evolution of the chordate karyotype". Nature 453 (7198): 1064–1071. Bibcode 2008Natur.453.1064P. DOI:10.1038/nature06967. ISSN 0028-0836. PMID 18563158.  edit

  External links

   
               

 

All translations of Chordate


sensagent's content

  • definitions
  • synonyms
  • antonyms
  • encyclopedia

Dictionary and translator for handheld

⇨ New : sensagent is now available on your handheld

   Advertising ▼

sensagent's office

Shortkey or widget. Free.

Windows Shortkey: sensagent. Free.

Vista Widget : sensagent. Free.

Webmaster Solution

Alexandria

A windows (pop-into) of information (full-content of Sensagent) triggered by double-clicking any word on your webpage. Give contextual explanation and translation from your sites !

Try here  or   get the code

SensagentBox

With a SensagentBox, visitors to your site can access reliable information on over 5 million pages provided by Sensagent.com. Choose the design that fits your site.

Business solution

Improve your site content

Add new content to your site from Sensagent by XML.

Crawl products or adds

Get XML access to reach the best products.

Index images and define metadata

Get XML access to fix the meaning of your metadata.


Please, email us to describe your idea.

WordGame

The English word games are:
○   Anagrams
○   Wildcard, crossword
○   Lettris
○   Boggle.

Lettris

Lettris is a curious tetris-clone game where all the bricks have the same square shape but different content. Each square carries a letter. To make squares disappear and save space for other squares you have to assemble English words (left, right, up, down) from the falling squares.

boggle

Boggle gives you 3 minutes to find as many words (3 letters or more) as you can in a grid of 16 letters. You can also try the grid of 16 letters. Letters must be adjacent and longer words score better. See if you can get into the grid Hall of Fame !

English dictionary
Main references

Most English definitions are provided by WordNet .
English thesaurus is mainly derived from The Integral Dictionary (TID).
English Encyclopedia is licensed by Wikipedia (GNU).

Copyrights

The wordgames anagrams, crossword, Lettris and Boggle are provided by Memodata.
The web service Alexandria is granted from Memodata for the Ebay search.
The SensagentBox are offered by sensAgent.

Translation

Change the target language to find translations.
Tips: browse the semantic fields (see From ideas to words) in two languages to learn more.

last searches on the dictionary :

6073 online visitors

computed in 1.357s

I would like to report:
section :
a spelling or a grammatical mistake
an offensive content(racist, pornographic, injurious, etc.)
a copyright violation
an error
a missing statement
other
please precise:

Advertize

Partnership

Company informations

My account

login

registration

   Advertising ▼

Functional Chordate Anatomy (4.0 USD)

Commercial use of this term

Chordate Structure and Function (3.97 USD)

Commercial use of this term

Chordate morphology (17.96 USD)

Commercial use of this term

Chordate Structure and Function, second edition Kluge, Arnold G. (13.0 USD)

Commercial use of this term

Atlas of Chordate Structure (7.05 USD)

Commercial use of this term

Chordate Anatomy Herbert V. Rand and Herbert W. Rand 1948 HARDCOVER (8.5 USD)

Commercial use of this term

Dr. Chordate - Songs Of Biology Plus [CD New] (16.34 USD)

Commercial use of this term

Elements of Chordate Anatomy (McGraw-Hill series in organismic biology) (3.97 USD)

Commercial use of this term

Elements of Chordate Anatomy 1967 by Weichert,C.K. 0070690065 (4.48 USD)

Commercial use of this term

Songs Of Biology Plus - Dr. Chordate (2003, CD New) (17.71 CAD)

Commercial use of this term

Chordate Structure and Function, Allyn Waterman, First Printing Macmillian, 1971 (15.0 USD)

Commercial use of this term

AN ATLAS OF CHORDATE STRUCTURE by BRACEGIRDLE & MILES 1978 ILLUSTRATED (9.99 GBP)

Commercial use of this term

Chordate Development by H. E. Lehman (1987, Paperback) (14.95 USD)

Commercial use of this term

Chordate structure and function. (60.0 AUD)

Commercial use of this term

Elements of Chordate Anatomy by Charles Kipp Weichert (1975, Hardcover) (17.95 USD)

Commercial use of this term