» 
Arabic Bulgarian Chinese Croatian Czech Danish Dutch English Estonian Finnish French German Greek Hebrew Hindi Hungarian Icelandic Indonesian Italian Japanese Korean Latvian Lithuanian Malagasy Norwegian Persian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swedish Thai Turkish Vietnamese
Arabic Bulgarian Chinese Croatian Czech Danish Dutch English Estonian Finnish French German Greek Hebrew Hindi Hungarian Icelandic Indonesian Italian Japanese Korean Latvian Lithuanian Malagasy Norwegian Persian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swedish Thai Turkish Vietnamese

definition - Diatomic_molecule

definition of Wikipedia

   Advertizing ▼

Wikipedia

Diatomic molecule

                   
  A periodic table showing the elements that exist as homonuclear diatomic molecules under typical laboratory conditions. A mnemonic to remember them is that there are seven, and they form (excluding hydrogen) the shape of a 7 on the periodic table.[1]
  A space-filling model of the diatomic molecule dinitrogen, N2

Diatomic molecules are molecules composed only of two atoms, of either the same or different chemical elements. The prefix di- is of Greek origin, meaning 2. Common diatomic molecules are hydrogen (H2), nitrogen (N2), oxygen (O2), and carbon monoxide (CO). Seven elements exist as homonuclear diatomic molecules at room temperature: H2, N2, O2, F2, Cl2, Br2, and I2.[2] Many elements and chemical compounds aside from these form diatomic molecules when evaporated. The noble gases do not form diatomic molecules: this can be explained using molecular orbital theory (see molecular orbital diagram).

Contents

  Occurrence

Hundreds of diatomic molecules have been characterized[3] in the terrestrial environment, laboratory, and interstellar medium. About 99% of the Earth's atmosphere is composed of diatomic molecules, specifically oxygen and nitrogen at 21% and 78%, respectively. The natural abundance of hydrogen (H2) in the Earth's atmosphere is only on the order of parts per million, but H2 is, in fact, the most abundant diatomic molecule in nature. The interstellar medium is, indeed, dominated by hydrogen atoms.

If a diatomic molecule consists of two atoms of the same element, such as H2 and O2, then it is said to be homonuclear, but otherwise it is heteronuclear. The bond in a homonuclear diatomic molecule is non-polar. In most diatomic molecules, the elements are nonidentical. Prominent examples include carbon monoxide, nitric oxide, and hydrogen chloride, but other important examples include gaseous MgO, SiO, and many other species not normally considered diatomic because they polymerize near room temperature.

Elements that consist of diatomic molecules, under typical laboratory conditions of 1 bar and 25 °C, include hydrogen (H2), nitrogen (N2), oxygen (O2), and the halogens (although it is not yet known whether astatine forms diatomic astatine molecules[4]).[5] Other elements form homonuclear diatomics when evaporated, but these diatomic species repolymerize at lower temperatures. For example, heating ("cracking") elemental phosphorus gives diphosphorus, P2.

  Molecular geometry

Diatomic molecules cannot have any geometry but linear, as any two points always lie in a line. This is the simplest spatial arrangement of atoms after the sphericity of single atoms.[6]

  Historical significance

Diatomic elements played an important role in the elucidation of the concepts of element, atom, and molecule in the 19th century, because some of the most common elements, such as hydrogen, oxygen, and nitrogen, occur as diatomic molecules. John Dalton's original atomic hypothesis assumed that all elements were monatomic and that the atoms in compounds would normally have the simplest atomic ratios with respect to one another. For example, Dalton assumed that water's formula was HO, giving the atomic weight of oxygen as eight times that of hydrogen, instead of the modern value of about 16. As a consequence, confusion existed regarding atomic weights and molecular formulas for about half a century.

As early as 1805, Gay-Lussac and von Humboldt showed that water is formed of two volumes of hydrogen and one volume of oxygen, and by 1811 Amedeo Avogadro had arrived at the correct interpretation of water's composition, based on what is now called Avogadro's law and the assumption of diatomic elemental molecules. However, these results were mostly ignored until 1860. Part of this rejection was due to the belief that atoms of one element would have no chemical affinity towards atoms of the same element, and part was due to apparent exceptions to Avogadro's law that were not explained until later in terms of dissociating molecules.

At the 1860 Karlsruhe Congress on atomic weights, Cannizzaro resurrected Avogadro's ideas and used them to produce a consistent table of atomic weights, which mostly agree with modern values. These weights were an important pre-requisite for the discovery of the periodic law by Dmitri Mendeleev and Lothar Meyer.[7]

  Energy levels

It is convenient, and common, to represent a diatomic molecule as two point masses (the two atoms) connected by a massless spring. The energies involved in the various motions of the molecule can then be broken down into three categories.

  • The translational energies
  • The rotational energies
  • The vibrational energies

  Translational energies

The translational energy of the molecule is simply given by the kinetic energy expression:

E_{trans}=\frac{1}{2}mv^2

where m is the mass of the molecule and v is its velocity.

  Rotational energies

Classically, the kinetic energy of rotation is

E_{rot} = \frac{L^2}{2 I} \,
where
L \, is the angular momentum
I \, is the moment of inertia of the molecule

For microscopic, atomic-level systems like a molecule, angular momentum can only have specific discrete values given by

L^2 = l(l+1) \hbar^2 \,
where l is a non-negative integer and \hbar is the reduced Planck constant.

Also, for a diatomic molecule the moment of inertia is

I = \mu r_{0}^2 \,
where
\mu \, is the reduced mass of the molecule and
r_{0} \, is the average distance between the two atoms in the molecule.

So, substituting the angular momentum and moment of inertia into Erot, the rotational energy levels of a diatomic molecule are given by:

E_{rot} = \frac{l(l+1) \hbar^2}{2 \mu r_{0}^2} \ \ \ \ \ l=0,1,2,... \,

  Vibrational energies

Another way a diatomic molecule can move is to have each atom oscillate—or vibrate—along a line (the bond) connecting the two atoms. The vibrational energy is approximately that of a quantum harmonic oscillator:

E_{vib} = \left(n+\frac{1}{2} \right)\hbar \omega \ \ \ \ \ n=0,1,2,.... \,
where
n is an integer
\hbar is the reduced Planck constant and
\omega is the angular frequency of the vibration.

  Comparison between rotational and vibrational energy spacings

So the spacing, and the energy of a typical spectroscopic transition, between vibrational energy levels is about 100 times greater than that of a typical transition between rotational energy levels.

  Further reading

  • Huber, K. P. and Herzberg, G. (1979). Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules. New York: Van Nostrand: Reinhold. 
  • Tipler, Paul (1998). Physics For Scientists and Engineers : Vol. 1 (4th ed.). W. H. Freeman. ISBN 1-57259-491-8. 

  See also

  Notes and references

  1. ^ Moore, John W. (1996). The Chemical World Instructor's Manual. Cengage Learning. p. 12. 
  2. ^ Whitten, Kenneth W.; Davis, Raymond E.; Peck, M. Larry; Stanley, George G. (2010). Chemistry (9th ed.). Brooks/Cole, Cengage Learning. pp. 337–338. http://books.google.ca/books?id=6Zwu9-qT0qQC&pg=PA337#v=onepage&q&f=false. 
  3. ^ Huber, K. P. and Herzberg, G. (1979). Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules. New York: Van Nostrand: Reinhold. 
  4. ^ Hammond, C.R. (2012). "Section 4: Properties of the Elements and Inorganic Compounds". Handbook of Chemistry and Physics. http://www.hbcpnetbase.com//articles/04_01_91.pdf. 
  5. ^ Emsley, J. (1989). The Elements. Oxford: Clarendon Press. pp. 22–23. 
  6. ^ "VSEPR - A Summary". University of Berkeley College of Chemistry. 20 January 2008. http://mc2.cchem.berkeley.edu/VSEPR/
  7. ^ Ihde, Aaron J. (1961). "The Karlsruhe Congress: A centennial retrospective". Journal of Chemical Education 38 (2): 83–86. DOI:10.1021/ed038p83. http://search.jce.divched.org:8081/JCEIndex/FMPro?-db=jceindex.fp5&-lay=wwwform&combo=karlsruhe&-find=&-format=detail.html&-skip=0&-max=1&-token.2=0&-token.3=10. Retrieved 2007-08-24. 

  External links

  • Hyperphysics – Rotational Spectra of Rigid Rotor Molecules
  • Hyperphysics – Quantum Harmonic Oscillator
  • 3D Chem – Chemistry, Structures, and 3D Molecules
  • IUMSC – Indiana University Molecular Structure Center
   
               

 

All translations of Diatomic_molecule


sensagent's content

  • definitions
  • synonyms
  • antonyms
  • encyclopedia

Dictionary and translator for handheld

⇨ New : sensagent is now available on your handheld

   Advertising ▼

sensagent's office

Shortkey or widget. Free.

Windows Shortkey: sensagent. Free.

Vista Widget : sensagent. Free.

Webmaster Solution

Alexandria

A windows (pop-into) of information (full-content of Sensagent) triggered by double-clicking any word on your webpage. Give contextual explanation and translation from your sites !

Try here  or   get the code

SensagentBox

With a SensagentBox, visitors to your site can access reliable information on over 5 million pages provided by Sensagent.com. Choose the design that fits your site.

Business solution

Improve your site content

Add new content to your site from Sensagent by XML.

Crawl products or adds

Get XML access to reach the best products.

Index images and define metadata

Get XML access to fix the meaning of your metadata.


Please, email us to describe your idea.

WordGame

The English word games are:
○   Anagrams
○   Wildcard, crossword
○   Lettris
○   Boggle.

Lettris

Lettris is a curious tetris-clone game where all the bricks have the same square shape but different content. Each square carries a letter. To make squares disappear and save space for other squares you have to assemble English words (left, right, up, down) from the falling squares.

boggle

Boggle gives you 3 minutes to find as many words (3 letters or more) as you can in a grid of 16 letters. You can also try the grid of 16 letters. Letters must be adjacent and longer words score better. See if you can get into the grid Hall of Fame !

English dictionary
Main references

Most English definitions are provided by WordNet .
English thesaurus is mainly derived from The Integral Dictionary (TID).
English Encyclopedia is licensed by Wikipedia (GNU).

Copyrights

The wordgames anagrams, crossword, Lettris and Boggle are provided by Memodata.
The web service Alexandria is granted from Memodata for the Ebay search.
The SensagentBox are offered by sensAgent.

Translation

Change the target language to find translations.
Tips: browse the semantic fields (see From ideas to words) in two languages to learn more.

last searches on the dictionary :

4715 online visitors

computed in 0.296s

I would like to report:
section :
a spelling or a grammatical mistake
an offensive content(racist, pornographic, injurious, etc.)
a copyright violation
an error
a missing statement
other
please precise:

Advertize

Partnership

Company informations

My account

login

registration

   Advertising ▼