1.an area in which something acts or operates or has power or control"the range of a supersonic jet" "a piano has a greater range than the human voice" "the ambit of municipal legislation" "within the compass of this article" "within the scope of..."
2.the bony cavity in the skull containing the eyeball
3.the (usually elliptical) path described by one celestial body in its revolution about another"he plotted the orbit of the moon"
4.the path of an electron around the nucleus of an atom
5.a particular environment or walk of life"his social sphere is limited" "it was a closed area of employment" "he's out of my orbit"
1.move in an orbit"The moon orbits around the Earth" "The planets are orbiting the sun" "electrons orbit the nucleus"
1.(MeSH)Bony cavity that holds the eyeball and its associated tissues and appendages.
Advertizing ▼
OrbitOr"bit (?), n. [L. orbita a track or rut made by a wheel, course, circuit, fr. orbis a circle: cf. F. orbite. See 2d Orb.]
1. (Astron.) The path described by a heavenly body in its periodical revolution around another body; as, the orbit of Jupiter, of the earth, of the moon.
2. An orb or ball. [Rare & Improper]
Roll the lucid orbit of an eye. Young.
3. (Anat.) The cavity or socket of the skull in which the eye and its appendages are situated.
4. (Zoöl.) The skin which surrounds the eye of a bird.
Advertizing ▼
definition of Wikipedia
ambit, area, arena, celestial orbit, circle, compass, course, cranial orbit, domain, electron orbit, ellipse, eye socket, field, orbital cavity, range, reach, scope, sphere, trajectory
encircle, go around, go round, orb, orbit around, revolve, rotate, rotate about, rotate around, turn around, turn round, circle about (British), circle around (American), circle round (British), revolve about (British), revolve around (American), revolve round (British)
↘ orbital, scopal, subocular, suborbital, supraocular, supraorbital
Abscess of orbit • Acute inflammation of orbit • Atrophy of orbit • Cellulitis of orbit • Connective tissue of orbit • Cyst of orbit • Deformity of orbit • Disorder of orbit, unspecified • Disorders of orbit • Exostosis of orbit • Granuloma of orbit • Haemorrhage of orbit • Injury of eye and orbit • Injury of eye and orbit, part unspecified • Myiasis of orbit • Oedema of orbit • Orbit Evisceration • Orbit NOS • Orbit, unspecified • Osteomyelitis of orbit • Other disorders of orbit • Other disorders of orbit in diseases classified elsewhere • Penetrating wound of orbit with or without foreign body • Periostitis of orbit • Peripheral nerves of orbit • adipous cushion of orbit • attitude and orbit control system • celestial orbit • connective tissue of orbit • cranial orbit • dawn orbit • direct orbit • disposal orbit • disturbed orbit • drift orbit • dusk orbit • electron orbit • equatorial orbit • fractional orbit bombardment system • geostationary Earth orbit • geostationary orbit • geostationary satellite orbit • geosynchronous orbit • graveyard orbit • halo orbit • heliosynchronous orbit • highly eccentric orbit • inorbit intervention • inclination of an orbit • injury of eye and orbit • keplerian orbit • low Earth orbit • low orbit • medium Earth orbit • noon/midnight orbit • orbit NOS • orbit around • orbit circularization • orbit crowding • orbit decay • orbit determination • orbit drift • orbit inclination • orbit lowering • orbit period • orbit plane • orbit raising • orbit time • parking orbit • peripheral nerves of orbit • perturbed orbit • place in orbit • polar orbit • raise an orbit • reorbit • retrograde orbit • suborbit • sunsynchronous orbit • transfer orbit • undisturbed orbit • unperturbed orbit
Aero stationary orbit • Aerostationary orbit • Aerostationary orbit • Areocentric orbit • Areostationary orbit • Areosynchronous orbit • Artificial satellite orbit • Artificial satellites in retrograde orbit • Big Orbit Gallery • Box orbit • Cartoon Orbit • Chip and Orbit • Circular orbit • Circumsolar orbit • Clarke orbit • Dancing in Orbit • Dawndusk orbit • Dawn/dusk orbit • Decaying Orbit (film) • Earth Orbit Stations • Earth orbit (disambiguation) • Earth orbit rendezvous • Earth to orbit • Earth's orbit • Electron orbit • Elliptic orbit • Equatorial orbit • GEO orbit • Galileo InOrbit Validation Element • Gate orbit • Geocentric orbit • Geostationary orbit • Geostationary transfer orbit • Geosychronous orbit • Geosynchronous Earth Orbit • Geosynchronous Earth orbit • Geosynchronous orbit • Geosynchronous transfer orbit • Graveyard orbit • Halo orbit • Heliocentric orbit • Heliosynchronous orbit • Heteroclinic orbit • High Earth orbit • Highly elliptical orbit • Hohmann transfer orbit • Homoclinic orbit • Horseshoe orbit • Hyperbolic orbit • In Orbit • In Orbit (Clark Terry album) • Inorbit rendezvous • Inclined orbit • Intermediate circular orbit • Lagrange orbit • Lissajous orbit • List of artificial objects in heliocentric orbit • List of satellites in geosynchronous orbit • Little Orbit the Astrodog and the Screechers from Outer Space • Little Stevie Orbit • Low Earth orbit • Lunar Orbit Insertion • Lunar orbit • Lunar orbit rendezvous • Lunar transfer orbit • Man or Astroman? in Orbit • Mars orbit rendezvous • Medium Earth orbit • Microcosmic orbit • Minimum orbit intersection distance • Molniya orbit • Morning Orbit • Muscles of orbit • Mutants in Orbit • Near equatorial orbit • Noninclined orbit • Noonmidnight orbit • Noon/midnight orbit • Ocular orbit • On Orbit Mission Control • Open orbit • Operation Sea Orbit • Orbit (album) • Orbit (anatomy) • Orbit (anthology series) • Orbit (band) • Orbit (control theory) • Orbit (disambiguation) • Orbit (dynamics) • Orbit (gum) • Orbit (journal) • Orbit (mascot) • Orbit (publisher) • Orbit (scratch) • Orbit Award • Orbit Books • Orbit Communications Company • Orbit Dance • Orbit Design Studio • Orbit Downloader • Orbit Express Airlines • Orbit FM Australia • Orbit Group • Orbit Homes • Orbit Irrigation Products • Orbit Jet • Orbit Magazine • Orbit News • Orbit Publications • Orbit Replaceable Unit • Orbit Science Fiction • Orbit Semiconductor • Orbit Showtime • Orbit Skate Center • Orbit Unlimited • Orbit attitude and maneuvering system • Orbit determination • Orbit equation • Orbit insertion • Orbit method • Orbit module • Orbit of the Moon • Orbit phasing • Orbit@home • Osculating orbit • Parabolic Orbit • Parabolic orbit • Parking orbit • Perihelion shift of Mercury's orbit • Polar orbit • Polar sun synchronous orbit • Red Star, Winter Orbit • Rosetta (orbit) • Rosette orbit • Royal Orbit • Semisynchronous orbit • Sidereal orbit period • Singlestagetoorbit • Solar orbit • Spin–orbit interaction • Strange Cargo (William Orbit album) • Suborbit • Subsynchronous orbit • Sunsynchronous orbit • Supersynchronous Orbit • Synchronous orbit • The Jagged Orbit • The Orbit Room • The Three Stooges in Orbit • Threestagetoorbit • Transfer Orbit Stage • Transfer orbit • Tundra orbit • Twostagetoorbit • William Orbit
Cutaneous abscess, furuncle and carbuncle of face L020[àLExclusionDe]
orbit↕
factotum[Domaine]
length[Domaine]
greatness, magnitude, size  accomplish, achieve, attain, reach  be, comprise, constitute, make up, represent  be[Hyper.]
extend, go, lead, pass, run  continue, cover, extend, range  ambit, compass, orbit, range, reach, scope  compass, grasp, range, reach  range  range, reach  image, range, range of a function  background, scope, setting[Dérivé]
archaicism, archaism  lead, run  logic  grammar[Domaine]
factotum[Domaine]
SubjectiveAssessmentAttribute[Domaine]
extent[Hyper.]
compass  range, straddle  run  scopal[Dérivé]
orbit (n.)↕
cavity; bodily cavity; cavum; hollow[Classe]
particularité de forme des os (fr)[Classe]
élément du squelette humain (fr)[Classe]
skull[ClasseHyper.]
(round off; round), (round; Round)[Thème]
(eye; oculus; optic; eyes; peepers), (glasses; spectacles; specs; eyeglasses)[Thème]
tête humaine (fr)[DomainDescrip.]
anatomy[Domaine]
BodyPart[Domaine]
Skull[Domaine]
anatomical structure, bodily structure, body structure, complex body part, structure  bone, os[Hyper.]
cranial orbit, eye socket, orbit, orbital cavity[Dérivé]
body, organic structure, physical structure  caput, head  axial skeleton[Desc]
anatomy, general anatomy[Domaine]
orbit (n.)↕
mouvement tournant (fr)[Classe]
forme (fr)[Classe]
line[Classe]
chose courbe (fr)[ClasseParExt.]
route; public highway; thoroughfare[Classe]
tourner autour d'un axe (fr)[Thème]
(comet)[Thème]
factotum[Domaine]
Transitway[Domaine]
line  course, trend  circle, circulate, ring[Hyper.]
route  route  artificial satellite, orbiter, satellite  gyration, revolution, rotation, turning  celestial orbit, orbit  electron orbit, orbit[Dérivé]
mouvement d'un corps autour d'un axe (fr)[Classe]
forme définie (fr)[Classe...]
ligne courbe (fr)[Classe]
comète (fr)[DomainDescrip.]
itinerary, path, route, route description[Hyper.]
orb, orbit, place in orbit, revolve  orbital[Dérivé]
orbit (n.)↕
route; public highway; thoroughfare[Classe]
factotum[Domaine]
Transitway[Domaine]
line  course, trend  circle, circulate, ring[Hyper.]
route  route  artificial satellite, orbiter, satellite  gyration, revolution, rotation, turning  celestial orbit, orbit  electron orbit, orbit[Dérivé]
itinerary, path, route, route description[Hyper.]
orb, orbit, place in orbit, revolve  orbital[Dérivé]
orbit (n.)↕
partie (fr)[Classe...]
factotum[Domaine]
SubjectiveAssessmentAttribute[Domaine]
circumstances, position, situation, state of affairs[Hyper.]
environmental[Dérivé]
region; realm; domain; sector; sphere; line; branch[ClasseParExt.]
factotum[Domaine]
SubjectiveAssessmentAttribute[Domaine]
environment[Hyper.]
orbit (n.)↕
bouger en changeant de place, se déplacer (fr)[Classe...]
(gravitation)[Thème]
verbe admettant un cplt de lieu (fr)[DomaineCollocation]
(gravitation)[termes liés]
orbit (v.)↕
satellite artificiel (fr)[Classe]
ligne courbe (géométrie) (fr)[Classe]
cycle[Classe]
intervalle borné de temps, caractérisé par un phénomène (fr)[Classe...]
mouvement d'un corps autour d'un axe (fr)[Classe]
forme définie (fr)[Classe...]
ligne courbe (fr)[Classe]
(alien; extraterrestrial; extraterrestrial being), (star)[termes liés]
(celestial body; heavenly body)[termes liés]
mouvement dans l'espace sidéral (fr)[termes liés]
astronautics[Domaine]
ArtificialSatellite[Domaine]
comète (fr)[DomainDescrip.]
factotum[Domaine]
DirectionChange[Domaine]
go, go along, locomote, move, travel  equipment, gear, rig  turn, turning  itinerary, path, route, route description[Hyper.]
circle, circuit, lap  circle, round  satellite  orb, orbit, place in orbit, revolve  go around, revolve, rotate  gyrate, reel, revolve, rotate, spin, spin around, turn, whirl  revolutionary, rotary, rotatory  orbital[Dérivé]
circle, circulate, ring[Hyper.]
artificial satellite, orbiter, satellite  gyration, revolution, rotation, turning  celestial orbit, orbit  electron orbit[Dérivé]
orbit (v.)↕
orbit (v.)↕
In physics, an orbit is the gravitationally curved path of an object around a point in space, for example the orbit of a planet around the center of a star system, such as the Solar System.^{[1]}^{[2]} Orbits of planets are typically elliptical.
Current understanding of the mechanics of orbital motion is based on Albert Einstein's general theory of relativity, which accounts for gravity as due to curvature of spacetime, with orbits following geodesics. For ease of calculation, relativity is commonly approximated by the forcebased theory of universal gravitation based on Kepler's laws of planetary motion.^{[3]}
Contents 
Historically, the apparent motions of the planets were first understood geometrically (and without regard to gravity) in terms of epicycles, which are the sums of numerous circular motions.^{[4]} Theories of this kind predicted paths of the planets moderately well, until Johannes Kepler was able to show that the motions of planets were in fact (at least approximately) elliptical motions.^{[5]}
In the geocentric model of the solar system, the celestial spheres model was originally used to explain the apparent motion of the planets in the sky in terms of perfect spheres or rings, but after the planets' motions were more accurately measured, theoretical mechanisms such as deferent and epicycles were added. Although it was capable of accurately predicting the planets' position in the sky, more and more epicycles were required over time, and the model became more and more unwieldy.
The basis for the modern understanding of orbits was first formulated by Johannes Kepler whose results are summarised in his three laws of planetary motion. First, he found that the orbits of the planets in our solar system are elliptical, not circular (or epicyclic), as had previously been believed, and that the Sun is not located at the center of the orbits, but rather at one focus.^{[6]} Second, he found that the orbital speed of each planet is not constant, as had previously been thought, but rather that the speed depends on the planet's distance from the Sun. Third, Kepler found a universal relationship between the orbital properties of all the planets orbiting the Sun. For the planets, the cubes of their distances from the Sun are proportional to the squares of their orbital periods. Jupiter and Venus, for example, are respectively about 5.2 and 0.723 AU distant from the Sun, their orbital periods respectively about 11.86 and 0.615 years. The proportionality is seen by the fact that the ratio for Jupiter, 5.2^{3}/11.86^{2}, is practically equal to that for Venus, 0.723^{3}/0.615^{2}, in accord with the relationship.
Isaac Newton demonstrated that Kepler's laws were derivable from his theory of gravitation and that, in general, the orbits of bodies subject to gravity were conic sections, if the force of gravity propagated instantaneously. Newton showed that, for a pair of bodies, the orbits' sizes are in inverse proportion to their masses, and that the bodies revolve about their common center of mass. Where one body is much more massive than the other, it is a convenient approximation to take the center of mass as coinciding with the center of the more massive body.
Albert Einstein was able to show that gravity was due to curvature of spacetime, and thus he was able to remove Newton's assumption that changes propagate instantaneously. In relativity theory, orbits follow geodesic trajectories which approximate very well to the Newtonian predictions. However there are differences that can be used to determine which theory describes reality more accurately. Essentially all experimental evidence that can distinguish between the theories agrees with relativity theory to within experimental measuremental accuracy, but the differences from Newtonian mechanics are usually very small (except where there are very strong gravity fields and very high speeds).
However, the Newtonian solution is still used for most purposes since it is significantly easier to use.
Within a planetary system, planets, dwarf planets, asteroids (a.k.a. minor planets), comets, and space debris orbit the barycenter in elliptical orbits. A comet in a parabolic or hyperbolic orbit about a barycenter is not gravitationally bound to the star and therefore is not considered part of the star's planetary system. Bodies which are gravitationally bound to one of the planets in a planetary system, either natural or artificial satellites, follow orbits about a barycenter near that planet.
Owing to mutual gravitational perturbations, the eccentricities of the planetary orbits vary over time. Mercury, the smallest planet in the Solar System, has the most eccentric orbit. At the present epoch, Mars has the next largest eccentricity while the smallest orbital eccentricities are seen in Venus and Neptune.
As two objects orbit each other, the periapsis is that point at which the two objects are closest to each other and the apoapsis is that point at which they are the farthest from each other. (More specific terms are used for specific bodies. For example, perigee and apogee are the lowest and highest parts of an orbit around Earth, while perihelion and aphelion are the closest and farthest points of an orbit around the Sun.)
In the elliptical orbit, the center of mass of the orbitingorbited system is at one focus of both orbits, with nothing present at the other focus. As a planet approaches periapsis, the planet will increase in speed, or velocity. As a planet approaches apoapsis, its velocity will decrease.
There are a few common ways of understanding orbits:
As an illustration of an orbit around a planet, the Newton's cannonball model may prove useful (see image below). This is a 'thought experiment', in which a cannon on top of a tall mountain is able to fire a cannonball horizontally at any chosen muzzle velocity. The effects of air friction on the cannonball are ignored (or perhaps the mountain is high enough that the cannon will be above the Earth's atmosphere, which comes to the same thing.)^{[7]}
If the cannon fires its ball with a low initial velocity, the trajectory of the ball curves downward and hits the ground (A). As the firing velocity is increased, the cannonball hits the ground farther (B) away from the cannon, because while the ball is still falling towards the ground, the ground is increasingly curving away from it (see first point, above). All these motions are actually "orbits" in a technical sense — they are describing a portion of an elliptical path around the center of gravity — but the orbits are interrupted by striking the Earth.
If the cannonball is fired with sufficient velocity, the ground curves away from the ball at least as much as the ball falls — so the ball never strikes the ground. It is now in what could be called a noninterrupted, or circumnavigating, orbit. For any specific combination of height above the center of gravity and mass of the planet, there is one specific firing velocity (unaffected by the mass of the ball, which is assumed to be very small relative to the Earth's mass) that produces a circular orbit, as shown in (C).
As the firing velocity is increased beyond this, elliptic orbits are produced; one is shown in (D). If the initial firing is above the surface of the Earth as shown, there will also be elliptical orbits at slower velocities; these will come closest to the Earth at the point half an orbit beyond, and directly opposite, the firing point.
At a specific velocity called escape velocity, again dependent on the firing height and mass of the planet, an open orbit such as (E) results — a parabolic trajectory. At even faster velocities the object will follow a range of hyperbolic trajectories. In a practical sense, both of these trajectory types mean the object is "breaking free" of the planet's gravity, and "going off into space".
The velocity relationship of two moving objects with mass can thus be considered in four practical classes, with subtypes:
In many situations relativistic effects can be neglected, and Newton's laws give a highly accurate description of the motion. The acceleration of each body is equal to the sum of the gravitational forces on it, divided by its mass, and the gravitational force between each pair of bodies is proportional to the product of their masses and decreases inversely with the square of the distance between them. To this Newtonian approximation, for a system of two point masses or spherical bodies, only influenced by their mutual gravitation (the twobody problem), the orbits can be exactly calculated. If the heavier body is much more massive than the smaller, as for a satellite or small moon orbiting a planet or for the Earth orbiting the Sun, it is accurate and convenient to describe the motion in a coordinate system that is centered on the heavier body, and we say that the lighter body is in orbit around the heavier. For the case where the masses of two bodies are comparable, an exact Newtonian solution is still available, and qualitatively similar to the case of dissimilar masses, by centering the coordinate system on the center of mass of the two.
Energy is associated with gravitational fields. A stationary body far from another can do external work if it is pulled towards it, and therefore has gravitational potential energy. Since work is required to separate two bodies against the pull of gravity, their gravitational potential energy increases as they are separated, and decreases as they approach one another. For point masses the gravitational energy decreases without limit as they approach zero separation, and it is convenient and conventional to take the potential energy as zero when they are an infinite distance apart, and then negative (since it decreases from zero) for smaller finite distances.
With two bodies, an orbit is a conic section. The orbit can be open (so the object never returns) or closed (returning), depending on the total energy (kinetic + potential energy) of the system. In the case of an open orbit, the speed at any position of the orbit is at least the escape velocity for that position, in the case of a closed orbit, always less. Since the kinetic energy is never negative, if the common convention is adopted of taking the potential energy as zero at infinite separation, the bound orbits have negative total energy, parabolic trajectories have zero total energy, and hyperbolic orbits have positive total energy.
An open orbit has the shape of a hyperbola (when the velocity is greater than the escape velocity), or a parabola (when the velocity is exactly the escape velocity). The bodies approach each other for a while, curve around each other around the time of their closest approach, and then separate again forever. This may be the case with some comets if they come from outside the solar system.
A closed orbit has the shape of an ellipse. In the special case that the orbiting body is always the same distance from the center, it is also the shape of a circle. Otherwise, the point where the orbiting body is closest to Earth is the perigee, called periapsis (less properly, "perifocus" or "pericentron") when the orbit is around a body other than Earth. The point where the satellite is farthest from Earth is called apogee, apoapsis, or sometimes apifocus or apocentron. A line drawn from periapsis to apoapsis is the lineofapsides. This is the major axis of the ellipse, the line through its longest part.
Orbiting bodies in closed orbits repeat their paths after a constant period of time. This motion is described by the empirical laws of Kepler, which can be mathematically derived from Newton's laws. These can be formulated as follows:
Note that that while bound orbits around a point mass or around a spherical body with an Newtonian gravitational field are closed ellipses, which repeat the same path exactly and indefinitely, any nonspherical or nonNewtonian effects (as caused, for example, by the slight oblateness of the Earth, or by relativistic effects, changing the gravitational field's behavior with distance) will cause the orbit's shape to depart from the closed ellipses characteristic of Newtonian twobody motion. The twobody solutions were published by Newton in Principia in 1687. In 1912, Karl Fritiof Sundman developed a converging infinite series that solves the threebody problem; however, it converges too slowly to be of much use. Except for special cases like the Lagrangian points, no method is known to solve the equations of motion for a system with four or more bodies.
Instead, orbits with many bodies can be approximated with arbitrarily high accuracy. These approximations take two forms:
Differential simulations with large numbers of objects perform the calculations in a hierarchical pairwise fashion between centers of mass. Using this scheme, galaxies, star clusters and other large objects have been simulated.
It has been suggested that this article or section be merged into Kepler's_laws_of_planetary_motion#Derivation from Newton's laws of motion and Newton's law of gravitation. (Discuss) Proposed since November 2009. 
Note that the following is a classical (Newtonian) analysis of orbital mechanics, which assumes that the more subtle effects of general relativity, such as frame dragging and gravitational time dilation are negligible. Relativistic effects cease to be negligible when near very massive bodies (as with the precession of Mercury's orbit about the Sun), or when extreme precision is needed (as with calculations of the orbital elements and time signal references for GPS satellites.^{[8]})
To analyze the motion of a body moving under the influence of a force which is always directed towards a fixed point, it is convenient to use polar coordinates with the origin coinciding with the center of force. In such coordinates the radial and transverse components of the acceleration are, respectively:
and
Since the force is entirely radial, and since acceleration is proportional to force, it follows that the transverse acceleration is zero. As a result,
After integrating, we have
which is actually the theoretical proof of Kepler's second law (A line joining a planet and the Sun sweeps out equal areas during equal intervals of time). The constant of integration, h, is the angular momentum per unit mass. It then follows that
where we have introduced the auxiliary variable
The radial force ƒ(r) per unit mass is the radial acceleration a_{r} defined above. Solving the above differential equation with respect to time^{[9]}(See also Binet equation) yields:
In the case of gravity, Newton's law of universal gravitation states that the force is proportional to the inverse square of the distance:
where G is the constant of universal gravitation, m is the mass of the orbiting body (planet)  note that m is absent from the equation since it cancels out, and M is the mass of the central body (the Sun). Substituting into the prior equation, we have
So for the gravitational force — or, more generally, for any inverse square force law — the right hand side of the equation becomes a constant and the equation is seen to be the harmonic equation (up to a shift of origin of the dependent variable). The solution is:
where A and θ_{0} are arbitrary constants.
The equation of the orbit described by the particle is thus:
where e is:
In general, this can be recognized as the equation of a conic section in polar coordinates (r, θ). We can make a further connection with the classic description of conic section with:
If parameter e is smaller than one, e is the eccentricity and a the semimajor axis of an ellipse.
The analysis so far has been two dimensional; it turns out that an unperturbed orbit is twodimensional in a plane fixed in space, and thus the extension to three dimensions requires simply rotating the twodimensional plane into the required angle relative to the poles of the planetary body involved.
The rotation to do this in three dimensions requires three numbers to uniquely determine; traditionally these are expressed as three angles.
The orbital period is simply how long an orbiting body takes to complete one orbit.
Six parameters are required to specify an orbit about a body. For example, the 3 numbers which describe the body's initial position, and the 3 values which describe its velocity will describe a unique orbit that can be calculated forwards (or backwards). However, traditionally the parameters used are slightly different.
The traditionally used set of orbital elements is called the set of Keplerian elements, after Johannes Kepler and his laws. The Keplerian elements are six:
In principle once the orbital elements are known for a body, its position can be calculated forward and backwards indefinitely in time. However, in practice, orbits are affected or perturbed, by other forces than simple gravity from an assumed point source (see the next section), and thus the orbital elements change over time.
An orbital perturbation is when a force or impulse which is much smaller than the overall force or average impulse of the main gravitating body and which is external to the two orbiting bodies causes an acceleration, which changes the parameters of the orbit over time.
A small radial impulse given to a body in orbit changes the eccentricity, but not the orbital period (to first order). A prograde or retrograde impulse (i.e. an impulse applied along the orbital motion) changes both the eccentricity and the orbital period. Notably, a prograde impulse at periapsis raises the altitude at apoapsis, and vice versa, and a retrograde impulse does the opposite. A transverse impulse (out of the orbital plane) causes rotation of the orbital plane without changing the period or eccentricity. In all instances, a closed orbit will still intersect the perturbation point.
If an orbit is about a planetary body with significant atmosphere, its orbit can decay because of drag. Particularly at each periapsis, the object experiences atmospheric drag, losing energy. Each time, the orbit grows less eccentric (more circular) because the object loses kinetic energy precisely when that energy is at its maximum. This is similar to the effect of slowing a pendulum at its lowest point; the highest point of the pendulum's swing becomes lower. With each successive slowing more of the orbit's path is affected by the atmosphere and the effect becomes more pronounced. Eventually, the effect becomes so great that the maximum kinetic energy is not enough to return the orbit above the limits of the atmospheric drag effect. When this happens the body will rapidly spiral down and intersect the central body.
The bounds of an atmosphere vary wildly. During a solar maximum, the Earth's atmosphere causes drag up to a hundred kilometres higher than during a solar minimum.
Some satellites with long conductive tethers can also experience orbital decay because of electromagnetic drag from the Earth's magnetic field. As the wire cuts the magnetic field it acts as a generator, moving electrons from one end to the other. The orbital energy is converted to heat in the wire.
Orbits can be artificially influenced through the use of rocket engines which change the kinetic energy of the body at some point in its path. This is the conversion of chemical or electrical energy to kinetic energy. In this way changes in the orbit shape or orientation can be facilitated.
Another method of artificially influencing an orbit is through the use of solar sails or magnetic sails. These forms of propulsion require no propellant or energy input other than that of the Sun, and so can be used indefinitely. See statite for one such proposed use.
Orbital decay can occur due to tidal forces for objects below the synchronous orbit for the body they're orbiting. The gravity of the orbiting object raises tidal bulges in the primary, and since below the synchronous orbit the orbiting object is moving faster than the body's surface the bulges lag a short angle behind it. The gravity of the bulges is slightly off of the primarysatellite axis and thus has a component along the satellite's motion. The near bulge slows the object more than the far bulge speeds it up, and as a result the orbit decays. Conversely, the gravity of the satellite on the bulges applies torque on the primary and speeds up its rotation. Artificial satellites are too small to have an appreciable tidal effect on the planets they orbit, but several moons in the solar system are undergoing orbital decay by this mechanism. Mars' innermost moon Phobos is a prime example, and is expected to either impact Mars' surface or break up into a ring within 50 million years.
Orbits can decay via the emission of gravitational waves. This mechanism is extremely weak for most stellar objects, only becoming significant in cases where there is a combination of extreme mass and extreme acceleration, such as with black holes or neutron stars that are orbiting each other closely.
The standard analysis of orbiting bodies assumes that all bodies consist of uniform spheres, or more generally, concentric shells each of uniform density. It can be shown that such bodies are gravitationally equivalent to point sources.
However, in the real world, many bodies rotate, and this introduces oblateness and distorts the gravity field, and gives a quadrupole moment to the gravitational field which is significant at distances comparable to the radius of the body.
The effects of other gravitating bodies can be significant. For example, the orbit of the Moon cannot be accurately described without allowing for the action of the Sun's gravity as well as the Earth's.
When there are more than two gravitating bodies it is referred to as an nbody problem. Most nbody problems have no closed form solution, although some special cases have been formulated.
For smaller bodies particularly, light and stellar wind can cause significant perturbations to the attitude and direction of motion of the body, and over time can be significant. Of the planetary bodies, the motion of asteroids is particularly affected over large periods when the asteroids are rotating relative to the Sun.
Orbital mechanics or astrodynamics is the application of ballistics and celestial mechanics to the practical problems concerning the motion of rockets and other spacecraft. The motion of these objects is usually calculated from Newton's laws of motion and Newton's law of universal gravitation. It is a core discipline within space mission design and control. Celestial mechanics treats more broadly the orbital dynamics of systems under the influence of gravity, including spacecraft and natural astronomical bodies such as star systems, planets, moons, and comets. Orbital mechanics focuses on spacecraft trajectories, including orbital maneuvers, orbit plane changes, and interplanetary transfers, and is used by mission planners to predict the results of propulsive maneuvers. General relativity is a more exact theory than Newton's laws for calculating orbits, and is sometimes necessary for greater accuracy or in highgravity situations (such as orbits close to the Sun).
The gravitational constant G has been calculated as:
Thus the constant has dimension density^{−1} time^{−2}. This corresponds to the following properties.
Scaling of distances (including sizes of bodies, while keeping the densities the same) gives similar orbits without scaling the time: if for example distances are halved, masses are divided by 8, gravitational forces by 16 and gravitational accelerations by 2. Hence velocities are halved and orbital periods remain the same. Similarly, when an object is dropped from a tower, the time it takes to fall to the ground remains the same with a scale model of the tower on a scale model of the Earth.
Scaling of distances while keeping the masses the same (in the case of point masses, or by reducing the densities) gives similar orbits; if distances are multiplied by 4, gravitational forces and accelerations are divided by 16, velocities are halved and orbital periods are multiplied by 8.
When all densities are multiplied by 4, orbits are the same; gravitational forces are multiplied by 16 and accelerations by 4, velocities are doubled and orbital periods are halved.
When all densities are multiplied by 4, and all sizes are halved, orbits are similar; masses are divided by 2, gravitational forces are the same, gravitational accelerations are doubled. Hence velocities are the same and orbital periods are halved.
In all these cases of scaling. if densities are multiplied by 4, times are halved; if velocities are doubled, forces are multiplied by 16.
These properties are illustrated in the formula (derived from the formula for the orbital period)
for an elliptical orbit with semimajor axis a, of a small body around a spherical body with radius r and average density σ, where T is the orbital period. See also Kepler's Third Law.
Look up orbit in Wiktionary, the free dictionary. 
Wikimedia Commons has media related to: Orbits 

sensagent's content
Dictionary and translator for handheld
New : sensagent is now available on your handheld
Advertising ▼
Webmaster Solution
Alexandria
A windows (popinto) of information (fullcontent of Sensagent) triggered by doubleclicking any word on your webpage. Give contextual explanation and translation from your sites !
SensagentBox
With a SensagentBox, visitors to your site can access reliable information on over 5 million pages provided by Sensagent.com. Choose the design that fits your site.
Business solution
Improve your site content
Add new content to your site from Sensagent by XML.
Crawl products or adds
Get XML access to reach the best products.
Index images and define metadata
Get XML access to fix the meaning of your metadata.
Please, email us to describe your idea.
Lettris
Lettris is a curious tetrisclone game where all the bricks have the same square shape but different content. Each square carries a letter. To make squares disappear and save space for other squares you have to assemble English words (left, right, up, down) from the falling squares.
boggle
Boggle gives you 3 minutes to find as many words (3 letters or more) as you can in a grid of 16 letters. You can also try the grid of 16 letters. Letters must be adjacent and longer words score better. See if you can get into the grid Hall of Fame !
English dictionary
Main references
Most English definitions are provided by WordNet .
English thesaurus is mainly derived from The Integral Dictionary (TID).
English Encyclopedia is licensed by Wikipedia (GNU).
Copyrights
The wordgames anagrams, crossword, Lettris and Boggle are provided by Memodata.
The web service Alexandria is granted from Memodata for the Ebay search.
The SensagentBox are offered by sensAgent.
Translation
Change the target language to find translations.
Tips: browse the semantic fields (see From ideas to words) in two languages to learn more.
last searches on the dictionary :
computed in 0.156s
Advertising ▼