» 
Arabic Bulgarian Chinese Croatian Czech Danish Dutch English Estonian Finnish French German Greek Hebrew Hindi Hungarian Icelandic Indonesian Italian Japanese Korean Latvian Lithuanian Malagasy Norwegian Persian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swedish Thai Turkish Vietnamese
Arabic Bulgarian Chinese Croatian Czech Danish Dutch English Estonian Finnish French German Greek Hebrew Hindi Hungarian Icelandic Indonesian Italian Japanese Korean Latvian Lithuanian Malagasy Norwegian Persian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swedish Thai Turkish Vietnamese

definitions - PROBABILITIES

probability (n.)

1.the quality of being probable; a probable event or the most probable event"for a while mutiny seemed a probability" "going by past experience there was a high probability that the visitors were lost"

2.a measure of how likely it is that some event will occur; a number expressing the ratio of favorable cases to the whole number of cases possible"the probability that an unbiased coin will fall with the head up is 0.5"

3.the probability of a specified outcome

Probability (n.)

1.(MeSH)The study of chance processes or the relative frequency characterizing a chance process.

   Advertizing ▼

Merriam Webster

ProbabilityProb`a*bil"i*ty, n.; pl. Probabilities (#). [L. probabilitas: cf. F. probabilité.]


1. The quality or state of being probable; appearance of reality or truth; reasonable ground of presumption; likelihood.

Probability is the appearance of the agreement or disagreement of two ideas, by the intervention of proofs whose connection is not constant, but appears for the most part to be so. Locke.

2. That which is or appears probable; anything that has the appearance of reality or truth.

The whole life of man is a perpetual comparison of evidence and balancing of probabilities. Buckminster.

We do not call for evidence till antecedent probabilities fail. J. H. Newman.

3. (Math.) Likelihood of the occurrence of any event in the doctrine of chances, or the ratio of the number of favorable chances to the whole number of chances, favorable and unfavorable. See 1st Chance, n., 5.

Syn. -- Likeliness; credibleness; likelihood; chance.

   Advertizing ▼

definition (more)

definition of Wikipedia

synonyms - PROBABILITIES

see also - PROBABILITIES

phrases

-A posteriori probability • A priori probability • Absolute probability judgement • Algorithmic probability • Appeal to probability • Applied Probability Trust • Applied probability • Applied probability trust • Bayesian probability • Bernoulli Society for Mathematical Statistics and Probability • Bernstein inequalities (probability theory) • Bertrand paradox (probability) • Bertrand's paradox (probability) • Big O in probability notation • Boolean model (probability theory) • Borel probability measure • Brazilian Journal of Probability and Statistics • Calibrated probability assessment • Catalog of articles in probability theory • Chain rule (probability) • Classical definition of probability • Classical probability • Conditional probability • Conditional probability distribution • Contiguity (probability theory) • Continuous probability distribution • Coupling (probability) • Coverage probability • Direct probability • Discrete probability distribution • Empirical probability • Event (probability theory) • Exotic probability • Experiment (probability theory) • Fast probability integration • Fed Funds Probability • Fiducial probability • Free probability • Frequency probability • Geometric probability • Glossary of probability and statistics • High probability instruction • High probability trade • History of probability • Imprecise probability • Inclusion probability • Independence (probability theory) • Infinite Dimensional Analysis, Quantum Probability and Related Topics • Infinite divisibility (probability) • Inverse probability • Joint probability density function • Joint probability distribution • Law of total probability • Ley lines and Probability • Linear probability model • List of basic probability topics • List of fictional characters who can alter probability • List of probability distributions • List of probability topics • List of scientific journals in probability • Low Probability of Intercept Radar • Martingale (probability theory) • Maximum entropy probability distribution • Method of moments (probability theory) • Mixture (probability) • Negative probability • Neglect of probability • Network probability matrix • Normal probability plot • Notation in probability and statistics • Philosophy of probability • Philosophy of probability/temp • Pignistic probability • Posterior probability • Posterior probability distribution • Prior probability • Prior probability distribution • Probability (moral theology) • Probability Borel measure • Probability Moon • Probability Sun • Probability Surveys • Probability amplitude • Probability and statistics • Probability axioms • Probability broach • Probability calculus • Probability densities • Probability density • Probability density function • Probability distribution • Probability distribution function • Probability function • Probability integral transform • Probability interpretations • Probability mass function • Probability matching • Probability of Detection • Probability of Precipitation • Probability of default • Probability of error • Probability of kill • Probability of making the nut low hand in Omaha hold 'em • Probability of occupation • Probability plot • Probability plot correlation coefficient plot • Probability space • Probability theory • Probability vector • Propensity probability • Propensity theory of probability • Quantum probability • Realization (probability) • Relationships among probability distributions • Report on Probability A • Research Students Conference Probability and Statistics • Smoothness (probability theory) • Spectrum of theistic probability • Stability (probability) • Stable (probability) • Stars and bars (probability) • Statistical probability • Sticking probability • Surface probability • The Probability Broach • The Probability Broach (novel) • Timeline of probability and statistics • Total variation distance of probability measures • Unimodal probability distributions • Universal probability bound • Visual comfort probability • Win probability • Win probability added • Words of Estimative Probability

analogical dictionary




 

verity; truth[Classe]

caractère de ce qui peut être (fr)[Classe...]

presumption; theory; impression; assumption; verge; guess; conjecture; supposition; surmise; surmisal; speculation; hypothesis[Classe]

imaginable (fr)[Classe]

vraisemblable (fr)[ClasseHyper.]

vrai (fr)[Classe...]

caractère de ce qui paraît vrai (fr)[Classe]

probabilité (fr)[Classe]

nombre d'un mot (fr)[Classe]

implausibility; improbability; unlikelihood; unlikeliness[ClasseHyper.]

(presumption; theory; impression; assumption; verge; guess; conjecture; supposition; surmise; surmisal; speculation; hypothesis), (hypothesize; surmise; assume; suppose; posit; put; expect; daresay; hypothesise; presume; take for granted; suspect; think; opine; imagine; reckon; guess; believe; figure; postulate; fancy), (alternative)[Thème]

probable (fr)[Thème]

plusieurs (fr)[Caract.]

factotum[Domaine]

Likely[Domaine]

quality - likelihood, probability, verisimilitude - likelihood, likeliness, odds, probability - descriptor, form, signifier, word form - number[Hyper.]

likely, presumable, probable, supposed - vraisemblable (fr)[Propriété~]

probable - probabilistic - likely - unlikely - likely, probable - likely, potential - chance, probability - as likely as not, belike, in all likelihood, in all probability, likely, probably - believably, convincingly, credibly, plausibly, probably, prolly - improbable, unbelievable, unconvincing, unlikely[Dérivé]

plural, plural form[Domaine]

prospective[Similaire]

improbability, improbableness - implausibility, improbability, unlikelihood, unlikeliness - improbable, unlikely - singular, singular form[Ant.]

probability (n.)


Wikipedia

Probability

From Wikipedia, the free encyclopedia

  (Redirected from Probabilities)
Jump to: navigation, search

Probability is a way of expressing knowledge or belief that an event will occur or has occurred. In mathematics the concept has been given an exact meaning in probability theory, that is used extensively in such areas of study as mathematics, statistics, finance, gambling, science, and philosophy to draw conclusions about the likelihood of potential events and the underlying mechanics of complex systems.

Contents

Interpretations

The word probability does not have a consistent direct definition. In fact, there are sixteen broad categories of probability interpretations, whose adherents possess different (and sometimes conflicting) views about the fundamental nature of probability:

  1. Frequentists talk about probabilities only when dealing with experiments that are random and well-defined. The probability of a random event denotes the relative frequency of occurrence of an experiment's outcome, when repeating the experiment. Frequentists consider probability to be the relative frequency "in the long run" of outcomes.[1]
  2. Bayesians, however, assign probabilities to any statement whatsoever, even when no random process is involved. Probability, for a Bayesian, is a way to represent an individual's degree of belief in a statement, given the evidence.

Etymology

The word probability derives from probity, a measure of the authority of a witness in a legal case in Europe, and often correlated with the witness's nobility. In a sense, this differs much from the modern meaning of probability, which, in contrast, is used as a measure of the weight of empirical evidence, and is arrived at from inductive reasoning and statistical inference.[2][3]

History

The scientific study of probability is a modern development. Gambling shows that there has been an interest in quantifying the ideas of probability for millennia, but exact mathematical descriptions of use in those problems only arose much later.

According to Richard Jeffrey, "Before the middle of the seventeenth century, the term 'probable' (Latin probabilis) meant approvable, and was applied in that sense, univocally, to opinion and to action. A probable action or opinion was one such as sensible people would undertake or hold, in the circumstances."[4] However, in legal contexts especially, 'probable' could also apply to propositions for which there was good evidence.[5]

Aside from some elementary considerations made by Girolamo Cardano in the 16th century, the doctrine of probabilities dates to the correspondence of Pierre de Fermat and Blaise Pascal (1654). Christiaan Huygens (1657) gave the earliest known scientific treatment of the subject. Jakob Bernoulli's Ars Conjectandi (posthumous, 1713) and Abraham de Moivre's Doctrine of Chances (1718) treated the subject as a branch of mathematics. See Ian Hacking's The Emergence of Probability and James Franklin's The Science of Conjecture for histories of the early development of the very concept of mathematical probability.

The theory of errors may be traced back to Roger Cotes's Opera Miscellanea (posthumous, 1722), but a memoir prepared by Thomas Simpson in 1755 (printed 1756) first applied the theory to the discussion of errors of observation. The reprint (1757) of this memoir lays down the axioms that positive and negative errors are equally probable, and that there are certain assignable limits within which all errors may be supposed to fall; continuous errors are discussed and a probability curve is given.

Pierre-Simon Laplace (1774) made the first attempt to deduce a rule for the combination of observations from the principles of the theory of probabilities. He represented the law of probability of errors by a curve y = \phi(x), x being any error and y its probability, and laid down three properties of this curve:

  1. it is symmetric as to the y-axis;
  2. the x-axis is an asymptote, the probability of the error \infty being 0;
  3. the area enclosed is 1, it being certain that an error exists.

He also gave (1781) a formula for the law of facility of error (a term due to Lagrange, 1774), but one which led to unmanageable equations. Daniel Bernoulli (1778) introduced the principle of the maximum product of the probabilities of a system of concurrent errors.

The method of least squares is due to Adrien-Marie Legendre (1805), who introduced it in his Nouvelles méthodes pour la détermination des orbites des comètes (New Methods for Determining the Orbits of Comets). In ignorance of Legendre's contribution, an Irish-American writer, Robert Adrain, editor of "The Analyst" (1808), first deduced the law of facility of error,

\phi(x) = ce^{-h^2 x^2},

h being a constant depending on precision of observation, and c a scale factor ensuring that the area under the curve equals 1. He gave two proofs, the second being essentially the same as John Herschel's (1850). Gauss gave the first proof which seems to have been known in Europe (the third after Adrain's) in 1809. Further proofs were given by Laplace (1810, 1812), Gauss (1823), James Ivory (1825, 1826), Hagen (1837), Friedrich Bessel (1838), W. F. Donkin (1844, 1856), and Morgan Crofton (1870). Other contributors were Ellis (1844), De Morgan (1864), Glaisher (1872), and Giovanni Schiaparelli (1875). Peters's (1856) formula for r, the probable error of a single observation, is well known.

In the nineteenth century authors on the general theory included Laplace, Sylvestre Lacroix (1816), Littrow (1833), Adolphe Quetelet (1853), Richard Dedekind (1860), Helmert (1872), Hermann Laurent (1873), Liagre, Didion, and Karl Pearson. Augustus De Morgan and George Boole improved the exposition of the theory.

On the geometric side (see integral geometry) contributors to The Educational Times were influential (Miller, Crofton, McColl, Wolstenholme, Watson, and Artemas Martin).

Mathematical treatment

In mathematics, a probability of an event A is represented by a real number in the range from 0 to 1 and written as P(A), p(A) or Pr(A).[6] An impossible event has a probability of 0, and a certain event has a probability of 1. However, the converses are not always true: probability 0 events are not always impossible, nor probability 1 events certain. The rather subtle distinction between "certain" and "probability 1" is treated at greater length in the article on "almost surely".

The opposite or complement of an event A is the event [not A] (that is, the event of A not occurring); its probability is given by P(not A) = 1 - P(A).[7] As an example, the chance of not rolling a six on a six-sided die is 1 - (chance of rolling a six) = {1} - \tfrac{1}{6} = \tfrac{5}{6}. See Complementary event for a more complete treatment.

If both the events A and B occur on a single performance of an experiment this is called the intersection or joint probability of A and B, denoted as P(A \cap B).If two events, A and B are independent then the joint probability is

P(A \mbox{ and }B) = P(A \cap B) = P(A) P(B),\,

for example, if two coins are flipped the chance of both being heads is \tfrac{1}{2}\times\tfrac{1}{2} = \tfrac{1}{4}.[8]

If either event A or event B or both events occur on a single performance of an experiment this is called the union of the events A and B denoted as P(A \cup B).If two events are mutually exclusive then the probability of either occurring is

P(A\mbox{ or }B) = P(A \cup B)= P(A) + P(B).

For example, the chance of rolling a 1 or 2 on a six-sided die is P(1\mbox{ or }2) = P(1) + P(2) = \tfrac{1}{6} + \tfrac{1}{6} = \tfrac{1}{3}.

If the events are not mutually exclusive then

\mathrm{P}\left(A \hbox{ or } B\right)=\mathrm{P}\left(A\right)+\mathrm{P}\left(B\right)-\mathrm{P}\left(A \mbox{ and } B\right).

For example, when drawing a single card at random from a regular deck of cards, the chance of getting a heart or a face card (J,Q,K) (or one that is both) is \tfrac{13}{52} + \tfrac{12}{52} - \tfrac{3}{52} = \tfrac{11}{26}, because of the 52 cards of a deck 13 are hearts, 12 are face cards, and 3 are both: here the possibilities included in the "3 that are both" are included in each of the "13 hearts" and the "12 face cards" but should only be counted once.

Conditional probability is the probability of some event A, given the occurrence of some other event B.Conditional probability is written P(A|B), and is read "the probability of A, given B". It is defined by

P(A \mid B) = \frac{P(A \cap B)}{P(B)}.\,[9]

If P(B)=0 then P(A \mid B) is undefined.

Summary of probabilities
EventProbability
AP(A)\in[0,1]\,
not AP(A')=1-P(A)\,
A or B\begin{align}P(A\cup B) & = P(A)+P(B)-P(A\cap B) \\& = P(A)+P(B) \qquad\mbox{if A and B are mutually exclusive}\\\end{align}
A and B\begin{align}P(A\cap B) & = P(A|B)P(B) \\& = P(A)P(B) \qquad\mbox{if A and B are independent}\\\end{align}
A given BP(A \mid B) = \frac{P(A \cap B)}{P(B)}\,

Theory

Like other theories, the theory of probability is a representation of probabilistic concepts in formal terms—that is, in terms that can be considered separately from their meaning. These formal terms are manipulated by the rules of mathematics and logic, and any results are then interpreted or translated back into the problem domain.

There have been at least two successful attempts to formalize probability, namely the Kolmogorov formulation and the Cox formulation. In Kolmogorov's formulation (see probability space), sets are interpreted as events and probability itself as a measure on a class of sets. In Cox's theorem, probability is taken as a primitive (that is, not further analyzed) and the emphasis is on constructing a consistent assignment of probability values to propositions. In both cases, the laws of probability are the same, except for technical details.

There are other methods for quantifying uncertainty,such as the Dempster-Shafer theory or possibility theory,but those are essentially different and not compatible with the laws of probability as they are usually understood.

Applications

Two major applications of probability theory in everyday life are in risk assessment and in trade on commodity markets. Governments typically apply probabilistic methods in environmental regulation where it is called "pathway analysis", often measuring well-being using methods that are stochastic in nature, and choosing projects to undertake based on statistical analyses of their probable effect on the population as a whole.

A good example is the effect of the perceived probability of any widespread Middle East conflict on oil prices - which have ripple effects in the economy as a whole. An assessment by a commodity trader that a war is more likely vs. less likely sends prices up or down, and signals other traders of that opinion. Accordingly, the probabilities are not assessed independently nor necessarily very rationally. The theory of behavioral finance emerged to describe the effect of such groupthink on pricing, on policy, and on peace and conflict.

It can reasonably be said that the discovery of rigorous methods to assess and combine probability assessments has had a profound effect on modern society. Accordingly, it may be of some importance to most citizens to understand how odds and probability assessments are made, and how they contribute to reputations and to decisions, especially in a democracy.

Another significant application of probability theory in everyday life is reliability. Many consumer products, such as automobiles and consumer electronics, utilize reliability theory in the design of the product in order to reduce the probability of failure. The probability of failure may be closely associated with the product's warranty.

Relation to randomness

In a deterministic universe, based on Newtonian concepts, there is no probability if all conditions are known. In the case of a roulette wheel, if the force of the hand and the period of that force are known, then the number on which the ball will stop would be a certainty. Of course, this also assumes knowledge of inertia and friction of the wheel, weight, smoothness and roundness of the ball, variations in hand speed during the turning and so forth. A probabilistic description can thus be more useful than Newtonian mechanics for analyzing the pattern of outcomes of repeated rolls of roulette wheel. Physicists face the same situation in kinetic theory of gases, where the system, while deterministic in principle, is so complex (with the number of molecules typically the order of magnitude of Avogadro constant 6.02·1023) that only statistical description of its properties is feasible.

A revolutionary discovery of 20th century physics was the random character of all physical processes that occur at sub-atomic scales and are governed by the laws of quantum mechanics. The wave function itself evolves deterministically as long as no observation is made, but, according to the prevailing Copenhagen interpretation, the randomness caused by the wave function collapsing when an observation is made, is fundamental. This means that probability theory is required to describe nature. Others never came to terms with the loss of determinism. Albert Einstein famously remarked in a letter to Max Born: Jedenfalls bin ich überzeugt, daß der Alte nicht würfelt. (I am convinced that God does not play dice). Although alternative viewpoints exist, such as that of quantum decoherence being the cause of an apparent random collapse, at present there is a firm consensus among physicists that probability theory is necessary to describe quantum phenomena.[citation needed]

See also

Logic portal

Notes

  1. ^ The Logic of Statistical Inference, Ian Hacking, 1965
  2. ^ The Emergence of Probability: A Philosophical Study of Early Ideas about Probability, Induction and Statistical Inference, Ian Hacking, Cambridge University Press, 2006, ISBN 0521685575, 9780521685573
  3. ^ The Cambridge History of Seventeenth-century Philosophy, Daniel Garber, 2003
  4. ^ Jeffrey, R.C., Probability and the Art of Judgment, Cambridge University Press. (1992). pp. 54-55 . ISBN 0-521-39459-7
  5. ^ Franklin, J., The Science of Conjecture: Evidence and Probability Before Pascal, Johns Hopkins University Press. (2001). pp. 22, 113, 127
  6. ^ Olofsson, Peter. (2005) Page 8.
  7. ^ Olofsson, page 9
  8. ^ Olofsson, page 35.
  9. ^ Olofsson, page 29.

References

  • Kallenberg, O. (2005) Probabilistic Symmetries and Invariance Principles. Springer -Verlag, New York. 510 pp. ISBN 0-387-25115-4
  • Kallenberg, O. (2002) Foundations of Modern Probability, 2nd ed. Springer Series in Statistics. 650 pp. ISBN 0-387-95313-2
  • Olofsson, Peter (2005) Probability, Statistics, and Stochastic Processes, Wiley-Interscience. 504 pp ISBN 0-471-67969-0.

Quotations

  • Damon Runyon, "It may be that the race is not always to the swift, nor the battle to the strong - but that is the way to bet."
  • Pierre-Simon Laplace "It is remarkable that a science which began with the consideration of games of chance should have become the most important object of human knowledge." Théorie Analytique des Probabilités, 1812.
  • Richard von Mises "The unlimited extension of the validity of the exact sciences was a characteristic feature of the exaggerated rationalism of the eighteenth century" (in reference to Laplace). Probability, Statistics, and Truth, p 9. Dover edition, 1981 (republication of second English edition, 1957).

External links

Probability

                   

Probability is ordinarily used to describe an attitude of mind towards some proposition of whose truth is not certain.[1] The proposition of interest is usually of the form "Will a specific event occur?" The attitude of mind is of the form "How certain are we that the event will occur?" The certainty we adopt can be described in terms of a numerical measure and this number, between 0 and 1, we call probability.[2] The higher the probability of an event, the more certain we are that the event will occur. Thus, probability in an applied sense is a measure of the confidence a person has that a (random) event will occur.

The concept has been given an axiomatic mathematical derivation in probability theory, which is used widely in such areas of study as mathematics, statistics, finance, gambling, science, artificial intelligence/machine learning and philosophy to, for example, draw inferences about the expected frequency of events. Probability theory is also used to describe the underlying mechanics and regularities of complex systems.

Contents

  Interpretations

When dealing with experiments that are random and well-defined in a purely theoretical setting (like tossing a fair coin), probabilities describe the statistical number of outcomes considered divided by the number of all outcomes (tossing a fair coin twice will yield HH with probability 1/4, because the four outcomes HH, HT, TH and TT are possible). When it comes to practical application, however, the word probability does not have a singular direct definition. In fact, there are two major categories of probability interpretations, whose adherents possess conflicting views about the fundamental nature of probability:

  1. Objectivists assign numbers to describe some objective or physical state of affairs. The most popular version of objective probability is Frequentism, which claims that the probability of a random event denotes the relative frequency of occurrence of an experiment's outcome, when repeating the experiment. Frequentists consider probability to be the relative frequency "in the long run" of outcomes.[3] A modification of frequentism is propensity probability, which interprets probability as the tendency of some experiment to yield a certain outcome, even if it is performed only once.
  2. Subjectivists assign numbers per subjective probability, i.e., as a degree of belief.[4] The most popular version of subjective probability is Bayesianism, which includes expert knowledge as well as experimental data to produce probabilities. The expert knowledge is represented by some (subjective) a prior probability distribution. The data is incorporated in a likelihood function. The product of the prior and the likelihood, normalized, results in a posterior probability distribution that incorporates all the information known to date.[5] Starting from arbitrary, subjective probabilities for a group of agents, some bayesianists claim that all agents will eventually have sufficiently similar assumptions about probabilities, given enough evidence,.

  Etymology

The word Probability derives from the Latin probabilitas, which can also mean probity, a measure of the authority of a witness in a legal case in Europe, and often correlated with the witness's nobility. In a sense, this differs much from the modern meaning of probability, which, in contrast, is a measure of the weight of empirical evidence, and is arrived at from inductive reasoning and statistical inference.[6]

  History

The scientific study of probability is a modern development. Gambling shows that there has been an interest in quantifying the ideas of probability for millennia, but exact mathematical descriptions arose much later. There are reasons of course, for the slow development of the mathematics of probability. Whereas games of chance provided the impetus for the mathematical study of probability, fundamental issues are still obscured by the superstitions of gamblers.[7]

  Christiaan Huygens published the first book on probability

According to Richard Jeffrey, "Before the middle of the seventeenth century, the term 'probable' (Latin probabilis) meant approvable, and was applied in that sense, univocally, to opinion and to action. A probable action or opinion was one such as sensible people would undertake or hold, in the circumstances."[8] However, in legal contexts especially, 'probable' could also apply to propositions for which there was good evidence.[9]

Aside from elementary work by Girolamo Cardano in the 16th century, the doctrine of probabilities dates to the correspondence of Pierre de Fermat and Blaise Pascal (1654). Christiaan Huygens (1657) gave the earliest known scientific treatment of the subject.[10] Jakob Bernoulli's Ars Conjectandi (posthumous, 1713) and Abraham de Moivre's Doctrine of Chances (1718) treated the subject as a branch of mathematics.[11] See Ian Hacking's The Emergence of Probability and James Franklin's The Science of Conjecture for histories of the early development of the very concept of mathematical probability.

The theory of errors may be traced back to Roger Cotes's Opera Miscellanea (posthumous, 1722), but a memoir prepared by Thomas Simpson in 1755 (printed 1756) first applied the theory to the discussion of errors of observation.[citation needed] The reprint (1757) of this memoir lays down the axioms that positive and negative errors are equally probable, and that certain assignable limits define the range of all errors. Simpson also discusses continuous errors and describes a probability curve.

The first two laws of error that were proposed both originated with Pierre-Simon Laplace. The first law was published in 1774 and stated that the frequency of an error could be expressed as an exponential function of the numerical magnitude of the error, disregarding sign. The second law of error was proposed in 1778 by Laplace and stated that the frequency of the error is an exponential function of the square of the error.[12] The second law of error is called the normal distribution or the Gauss law. "It is difficult historically to attribute that law to Gauss, who in spite of his well-known precocity had probably not made this discovery before he was two years old."[12]

Daniel Bernoulli (1778) introduced the principle of the maximum product of the probabilities of a system of concurrent errors.

  Carl Friedrich Gauss

Adrien-Marie Legendre (1805) developed the method of least squares, and introduced it in his Nouvelles méthodes pour la détermination des orbites des comètes (New Methods for Determining the Orbits of Comets). In ignorance of Legendre's contribution, an Irish-American writer, Robert Adrain, editor of "The Analyst" (1808), first deduced the law of facility of error,

\phi(x) = ce^{-h^2 x^2},

h being a constant depending on precision of observation, and c a scale factor ensuring that the area under the curve equals 1. He gave two proofs, the second being essentially the same as John Herschel's (1850). Gauss gave the first proof that seems to have been known in Europe (the third after Adrain's) in 1809. Further proofs were given by Laplace (1810, 1812), Gauss (1823), James Ivory (1825, 1826), Hagen (1837), Friedrich Bessel (1838), W. F. Donkin (1844, 1856), and Morgan Crofton (1870). Other contributors were Ellis (1844), De Morgan (1864), Glaisher (1872), and Giovanni Schiaparelli (1875). Peters's (1856) formula for r, the probable error of a single observation, is well known.[to whom?]

In the nineteenth century authors on the general theory included Laplace, Sylvestre Lacroix (1816), Littrow (1833), Adolphe Quetelet (1853), Richard Dedekind (1860), Helmert (1872), Hermann Laurent (1873), Liagre, Didion, and Karl Pearson. Augustus De Morgan and George Boole improved the exposition of the theory.

Andrey Markov introduced[citation needed] the notion of Markov chains (1906), which played an important role in stochastic processes theory and its applications. The modern theory of probability based on the measure theory was developed by Andrey Kolmogorov (1931).

On the geometric side (see integral geometry) contributors to The Educational Times were influential (Miller, Crofton, McColl, Wolstenholme, Watson, and Artemas Martin).[citation needed]

  Theory

Like other theories, the theory of probability is a representation of probabilistic concepts in formal terms—that is, in terms that can be considered separately from their meaning. These formal terms are manipulated by the rules of mathematics and logic, and any results are interpreted or translated back into the problem domain.

There have been at least two successful attempts to formalize probability, namely the Kolmogorov formulation and the Cox formulation. In Kolmogorov's formulation (see probability space), sets are interpreted as events and probability itself as a measure on a class of sets. In Cox's theorem, probability is taken as a primitive (that is, not further analyzed) and the emphasis is on constructing a consistent assignment of probability values to propositions. In both cases, the laws of probability are the same, except for technical details.

There are other methods for quantifying uncertainty, such as the Dempster-Shafer theory or possibility theory, but those are essentially different and not compatible with the laws of probability as usually understood.

  Applications

Probability theory is applied in everyday life in risk assessment and in trade on financial markets. Governments apply probabilistic methods in environmental regulation, where it is called pathway analysis. A good example is the effect of the perceived probability of any widespread Middle East conflict on oil prices—which have ripple effects in the economy as a whole. An assessment by a commodity trader that a war is more likely vs. less likely sends prices up or down, and signals other traders of that opinion. Accordingly, the probabilities are neither assessed independently nor necessarily very rationally. The theory of behavioral finance emerged to describe the effect of such groupthink on pricing, on policy, and on peace and conflict.[13]

The discovery of rigorous methods to assess and combine probability assessments has changed society. It is important for most citizens to understand how probability assessments are made, and how they contribute to decisions.

Another significant application of probability theory in everyday life is reliability. Many consumer products, such as automobiles and consumer electronics, use reliability theory in product design to reduce the probability of failure. Failure probability may influence a manufacture's decisions on a product's warranty.[14]

The cache language model and other statistical language models that are used in natural language processing are also examples of applications of probability theory.

  Mathematical treatment

Consider an experiment that can produce a number of results. The collection of all results is called the sample space of the experiment. The power set of the sample space is formed by considering all different collections of possible results. For example, rolling a die can produce six possible results. One collection of possible results give an odd number on the die. Thus, the subset {1,3,5} is an element of the power set of the sample space of die rolls. These collections are called "events." In this case, {1,3,5} is the event that the die falls on some odd number. If the results that actually occur fall in a given event, the event is said to have occurred.

A probability is a way of assigning every event a value between zero and one, with the requirement that the event made up of all possible results (in our example, the event {1,2,3,4,5,6}) is assigned a value of one. To qualify as a probability, the assignment of values must satisfy the requirement that if you look at a collection of mutually exclusive events (events with no common results, e.g., the events {1,6}, {3}, and {2,4} are all mutually exclusive), the probability that at least one of the events will occur is given by the sum of the probabilities of all the individual events.[15]

The probability of an event A is written as P(A), p(A) or Pr(A).[16] This mathematical definition of probability can extend to infinite sample spaces, and even uncountable sample spaces, using the concept of a measure.

The opposite or complement of an event A is the event [not A] (that is, the event of A not occurring); its probability is given by P(not A) = 1 - P(A).[17] As an example, the chance of not rolling a six on a six-sided die is 1 – (chance of rolling a six) = 1 - \tfrac{1}{6} = \tfrac{5}{6}. See Complementary event for a more complete treatment.

If both events A and B occur on a single performance of an experiment, this is called the intersection or joint probability of A and B, denoted as P(A \cap B).

  Independent probability

If two events, A and B are independent then the joint probability is

P(A \mbox{ and }B) =  P(A \cap B) = P(A) P(B),\,

for example, if two coins are flipped the chance of both being heads is \tfrac{1}{2}\times\tfrac{1}{2} = \tfrac{1}{4}.[18]

  Mutually exclusive

If either event A or event B or both events occur on a single performance of an experiment this is called the union of the events A and B denoted as P(A \cup B). If two events are mutually exclusive then the probability of either occurring is

P(A\mbox{ or }B) =  P(A \cup B)= P(A) + P(B).

For example, the chance of rolling a 1 or 2 on a six-sided die is P(1\mbox{ or }2) = P(1) + P(2) = \tfrac{1}{6} + \tfrac{1}{6} = \tfrac{1}{3}.

  Not mutually exclusive

If the events are not mutually exclusive then

\mathrm{P}\left(A \hbox{ or } B\right)=\mathrm{P}\left(A\right)+\mathrm{P}\left(B\right)-\mathrm{P}\left(A \mbox{ and } B\right).

For example, when drawing a single card at random from a regular deck of cards, the chance of getting a heart or a face card (J,Q,K) (or one that is both) is \tfrac{13}{52} + \tfrac{12}{52} - \tfrac{3}{52} = \tfrac{11}{26}, because of the 52 cards of a deck 13 are hearts, 12 are face cards, and 3 are both: here the possibilities included in the "3 that are both" are included in each of the "13 hearts" and the "12 face cards" but should only be counted once.

  Conditional probability

Conditional probability is the probability of some event A, given the occurrence of some other event B. Conditional probability is written \mathrm{P}(A \mid B), and is read "the probability of A, given B". It is defined by

\mathrm{P}(A \mid B) = \frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}.\,[19]

If \mathrm{P}(B)=0 then \mathrm{P}(A \mid B) is undefined. Note that in this case A and B are independent.

  Summary of probabilities

Summary of probabilities
Event Probability
A P(A)\in[0,1]\,
not A P(A^c)=1-P(A)\,
A or B \begin{align}
P(A\cup B) & = P(A)+P(B)-P(A\cap B) \\
P(A\cup B) & = P(A)+P(B) \qquad\mbox{if A and B are mutually exclusive} \\
\end{align}
A and B \begin{align}
P(A\cap B) & = P(A|B)P(B) = P(B|A)P(A)\\
P(A\cap B) &  = P(A)P(B) \qquad\mbox{if A and B are independent}\\
\end{align}
A given B P(A \mid B) = \frac{P(A \cap B)}{P(B)}\,

  Relation to randomness

In a deterministic universe, based on Newtonian concepts, there would be no probability if all conditions are known, (Laplace's demon). In the case of a roulette wheel, if the force of the hand and the period of that force are known, the number on which the ball will stop would be a certainty. Of course, this also assumes knowledge of inertia and friction of the wheel, weight, smoothness and roundness of the ball, variations in hand speed during the turning and so forth. A probabilistic description can thus be more useful than Newtonian mechanics for analyzing the pattern of outcomes of repeated rolls of roulette wheel. Physicists face the same situation in kinetic theory of gases, where the system, while deterministic in principle, is so complex (with the number of molecules typically the order of magnitude of Avogadro constant 6.02·1023) that only statistical description of its properties is feasible.

Probability theory is required to describe nature.[20] A revolutionary discovery of early 20th century physics was the random character of all physical processes that occur at sub-atomic scales and are governed by the laws of quantum mechanics. The objective wave function evolves deterministically but, according to the Copenhagen interpretation, it deals with probabilities of observing, the outcome being explained by a wave function collapse when an observation is made. However, the loss of determinism for the sake of instrumentalism did not meet with universal approval. Albert Einstein famously remarked in a letter to Max Born: "I am convinced that God does not play dice".[21] Like Einstein, Erwin Schrödinger, who discovered the wave function, believed quantum mechanics is a statistical approximation of an underlying deterministic reality.[22] In modern interpretations, quantum decoherence accounts for subjectively probabilistic behavior.

  See also

  Notes

  1. ^ Kendall's Advanced Theory of Statistics, Volume 1: Distribution Theory, Alan Stuart and Keith Ord, 6th Ed 2009
  2. ^ An Introduction to Probability Theory and Its Applications, William Feller. 3rd Ed 1968
  3. ^ Hacking, Ian (1965). The Logic of Statistical Inference. 
  4. ^ Finetti, Bruno de (1970). "Logical foundations and measurement of subjective probability". Acta Psychologica 34: 129–145. DOI:10.1016/0001-6918(70)90012-0. 
  5. ^ Hogg, Robert V.; Craig, Allen; McKean, Joseph W. (2004). Introduction to Mathematical Statistics (6th ed.). Upper Saddle River: Pearson. ISBN 0-13-008507-3. 
  6. ^ The Emergence of Probability: A Philosophical Study of Early Ideas about Probability, Induction and Statistical Inference, Ian Hacking, Cambridge University Press, 2006, ISBN 978-0-521-68557-3
  7. ^ Freund, John. “Introduction to Probability”. 1973, p. 1.
  8. ^ Jeffrey, R.C., Probability and the Art of Judgment, Cambridge University Press. (1992). pp. 54-55 . ISBN 0-521-39459-7
  9. ^ Franklin, J., The Science of Conjecture: Evidence and Probability Before Pascal, Johns Hopkins University Press. (2001). pp. 22, 113, 127
  10. ^ Abrams, William, A Brief History of Probability, Second Moment, http://www.secondmoment.org/articles/probability.php, retrieved 2008-05-23 
  11. ^ Ivancevic, Vladimir G.; Ivancevic, Tijana T. (2008). Quantum leap : from Dirac and Feynman, across the universe, to human body and mind. Singapore ; Hackensack, NJ: World Scientific. p. 16. ISBN 978-981-281-927-7. 
  12. ^ a b Wilson EB (1923) First and second laws of error. JASA 18, 143
  13. ^ Singh, Laurie. "Whither Efficient Markets? Efficient Market Theory and Behavioral Finance". The Finance Professionals' Post, 2010.
  14. ^ Gorman, Michael. "Management Insights". Management Science, 2011.
  15. ^ Ross, Sheldon. A First course in Probability, 8th Edition. Page 26-27.
  16. ^ Olofsson, Peter. (2005) Page 8.
  17. ^ Olofsson, page 9
  18. ^ Olofsson, page 35.
  19. ^ Olofsson, page 29.
  20. ^ Burgi, Mark. ” Interpretations of Negative Probabilities”. 2009, p. 1.
  21. ^ Jedenfalls bin ich überzeugt, daß der Alte nicht würfelt.
  22. ^ Moore, W.J. (1992). Schrödinger: Life and Thought. Cambridge University Press. p. 479. ISBN 0-521-43767-9. 

  References

  • Kallenberg, O. (2005) Probabilistic Symmetries and Invariance Principles. Springer -Verlag, New York. 510 pp. ISBN 0-387-25115-4
  • Kallenberg, O. (2002) Foundations of Modern Probability, 2nd ed. Springer Series in Statistics. 650 pp. ISBN 0-387-95313-2
  • Olofsson, Peter (2005) Probability, Statistics, and Stochastic Processes, Wiley-Interscience. 504 pp ISBN 0-471-67969-0.

  External links

   
               

 

All translations of PROBABILITIES


sensagent's content

  • definitions
  • synonyms
  • antonyms
  • encyclopedia

Dictionary and translator for handheld

⇨ New : sensagent is now available on your handheld

   Advertising ▼

sensagent's office

Shortkey or widget. Free.

Windows Shortkey: sensagent. Free.

Vista Widget : sensagent. Free.

Webmaster Solution

Alexandria

A windows (pop-into) of information (full-content of Sensagent) triggered by double-clicking any word on your webpage. Give contextual explanation and translation from your sites !

Try here  or   get the code

SensagentBox

With a SensagentBox, visitors to your site can access reliable information on over 5 million pages provided by Sensagent.com. Choose the design that fits your site.

Business solution

Improve your site content

Add new content to your site from Sensagent by XML.

Crawl products or adds

Get XML access to reach the best products.

Index images and define metadata

Get XML access to fix the meaning of your metadata.


Please, email us to describe your idea.

WordGame

The English word games are:
○   Anagrams
○   Wildcard, crossword
○   Lettris
○   Boggle.

Lettris

Lettris is a curious tetris-clone game where all the bricks have the same square shape but different content. Each square carries a letter. To make squares disappear and save space for other squares you have to assemble English words (left, right, up, down) from the falling squares.

boggle

Boggle gives you 3 minutes to find as many words (3 letters or more) as you can in a grid of 16 letters. You can also try the grid of 16 letters. Letters must be adjacent and longer words score better. See if you can get into the grid Hall of Fame !

English dictionary
Main references

Most English definitions are provided by WordNet .
English thesaurus is mainly derived from The Integral Dictionary (TID).
English Encyclopedia is licensed by Wikipedia (GNU).

Copyrights

The wordgames anagrams, crossword, Lettris and Boggle are provided by Memodata.
The web service Alexandria is granted from Memodata for the Ebay search.
The SensagentBox are offered by sensAgent.

Translation

Change the target language to find translations.
Tips: browse the semantic fields (see From ideas to words) in two languages to learn more.

last searches on the dictionary :

2669 online visitors

computed in 0.265s

   Advertising ▼

I would like to report:
section :
a spelling or a grammatical mistake
an offensive content(racist, pornographic, injurious, etc.)
a copyright violation
an error
a missing statement
other
please precise:

Advertize

Partnership

Company informations

My account

login

registration

   Advertising ▼