Arabic Bulgarian Chinese Croatian Czech Danish Dutch English Estonian Finnish French German Greek Hebrew Hindi Hungarian Icelandic Indonesian Italian Japanese Korean Latvian Lithuanian Malagasy Norwegian Persian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swedish Thai Turkish Vietnamese
Arabic Bulgarian Chinese Croatian Czech Danish Dutch English Estonian Finnish French German Greek Hebrew Hindi Hungarian Icelandic Indonesian Italian Japanese Korean Latvian Lithuanian Malagasy Norwegian Persian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swedish Thai Turkish Vietnamese

definitions - Pseudomonas

Pseudomonas (n.)

1.type genus of the family Pseudomonodaceae

2.(MeSH)A genus of gram-negative, aerobic, rod-shaped bacteria widely distributed in nature. Some species are pathogenic for humans, animals, and plants.

   Advertizing ▼

definition (more)

definition of Wikipedia

synonyms - Pseudomonas

Pseudomonas (n.)

genus Pseudomonas

Pseudomonas (n.) (MeSH)

Chryseomonas  (MeSH), Flavimonas  (MeSH)

   Advertizing ▼


-Infection due to Pseudomonas mallei • Infection due to Pseudomonas pseudomallei NOS • Infections, Pseudomonas • Pneumonia due to Pseudomonas • Pseudomonas (aeruginosa)(mallei)(pseudomallei) as the cause of diseases classified to other chapters • Pseudomonas Bacteriophages • Pseudomonas Infections • Pseudomonas Phages • Pseudomonas Vaccines • Pseudomonas acidovorans • Pseudomonas aeruginosa • Pseudomonas alcaligenes • Pseudomonas cepacia • Pseudomonas fluorescens • Pseudomonas fragi • Pseudomonas mallei • Pseudomonas mendocina • Pseudomonas oleovorans • Pseudomonas phage 7s • Pseudomonas phage PP7 • Pseudomonas phage Pf1 • Pseudomonas phage phi 6 • Pseudomonas pseudoalcaligenes • Pseudomonas pseudomallei • Pseudomonas putida • Pseudomonas pyocanea • Pseudomonas pyocyanea • Pseudomonas solanacearum • Pseudomonas stutzeri • Pseudomonas syringae • Pseudomonas testosteroni • genus Pseudomonas

-Pseudomonas abietaniphila • Pseudomonas acidophila • Pseudomonas aeruginosa • Pseudomonas aeruginosa folliculitis • Pseudomonas agarici • Pseudomonas alcaligenes • Pseudomonas alcaliphila • Pseudomonas alkanolytica • Pseudomonas amygdali • Pseudomonas amyloderamosa • Pseudomonas anguilliseptica • Pseudomonas antarctica • Pseudomonas argentinensis • Pseudomonas asplenii • Pseudomonas aurantiaca • Pseudomonas aureofaciens • Pseudomonas avellanae • Pseudomonas azotifigens • Pseudomonas azotoformans • Pseudomonas balearica • Pseudomonas blatchfordae • Pseudomonas borbori • Pseudomonas boreopolis • Pseudomonas brassicacearum • Pseudomonas brenneri • Pseudomonas butanovora • Pseudomonas cannabina • Pseudomonas carboxydohydrogena • Pseudomonas caricapapayae • Pseudomonas cedrina • Pseudomonas chlororaphis • Pseudomonas cichorii • Pseudomonas citronellolis • Pseudomonas coenobios • Pseudomonas congelans • Pseudomonas coronafaciens • Pseudomonas corrugata • Pseudomonas costantinii • Pseudomonas cremoricolorata • Pseudomonas cruciviae • Pseudomonas delhiensis • Pseudomonas denitrificans • Pseudomonas excibis • Pseudomonas exotoxin • Pseudomonas extremorientalis • Pseudomonas ficuserectae • Pseudomonas flavescens • Pseudomonas fluorescens • Pseudomonas fragi • Pseudomonas frederiksbergensis • Pseudomonas fulva • Pseudomonas fuscovaginae • Pseudomonas gelidicola • Pseudomonas gessardii • Pseudomonas grimontii • Pseudomonas helianthi • Pseudomonas indica • Pseudomonas infection • Pseudomonas jessenii • Pseudomonas jinjuensis • Pseudomonas kilonensis • Pseudomonas knackmussii • Pseudomonas koreensis • Pseudomonas libanensis • Pseudomonas lini • Pseudomonas lundensis • Pseudomonas lutea • Pseudomonas luteola • Pseudomonas mandelii • Pseudomonas marginalis • Pseudomonas mediterranea • Pseudomonas meliae • Pseudomonas mendocina • Pseudomonas meridiana • Pseudomonas migulae • Pseudomonas monteilii • Pseudomonas moraviensis • Pseudomonas mosselii • Pseudomonas mucidolens • Pseudomonas nitroreducens • Pseudomonas oleovorans • Pseudomonas orientalis • Pseudomonas oryzihabitans • Pseudomonas otitidis • Pseudomonas pachastrellae • Pseudomonas palleroniana • Pseudomonas panacis • Pseudomonas papaveris • Pseudomonas parafulva • Pseudomonas peli • Pseudomonas perolens • Pseudomonas pertucinogena • Pseudomonas phage Φ6 • Pseudomonas plecoglossicida • Pseudomonas poae • Pseudomonas pohangensis • Pseudomonas proteolytica • Pseudomonas pseudoalcaligenes • Pseudomonas psychrophila • Pseudomonas psychrotolerans • Pseudomonas putida • Pseudomonas rathonis • Pseudomonas reptilivora • Pseudomonas resiniphila • Pseudomonas resinovorans • Pseudomonas rhizosphaerae • Pseudomonas rhodesiae • Pseudomonas rubescens • Pseudomonas sRNA • Pseudomonas sRNA P1 • Pseudomonas sRNA P11 • Pseudomonas sRNA P15 • Pseudomonas sRNA P16 • Pseudomonas sRNA P24 • Pseudomonas sRNA P26 • Pseudomonas sRNA P9 • Pseudomonas salomonii • Pseudomonas savastanoi • Pseudomonas segitis • Pseudomonas septica • Pseudomonas simiae • Pseudomonas straminea • Pseudomonas stutzeri • Pseudomonas suis • Pseudomonas synxantha • Pseudomonas syringae • Pseudomonas taetrolens • Pseudomonas thermotolerans • Pseudomonas thivervalensis • Pseudomonas tolaasii • Pseudomonas tomato • Pseudomonas tremae • Pseudomonas trivialis • Pseudomonas turbinellae • Pseudomonas tuticorinensis • Pseudomonas umsongensis • Pseudomonas vancouverensis • Pseudomonas veronii • Pseudomonas viridiflava • Pseudomonas vranovensis • Pseudomonas xanthomarina

analogical dictionary



P. aeruginosa colonies on an agar plate.
Scientific classification
Domain: Bacteria
Phylum: Proteobacteria
Class: Gammaproteobacteria
Order: Pseudomonadales
Family: Pseudomonadaceae
Genus: Pseudomonas
Migula 1894
Type species
Pseudomonas aeruginosa

P. aeruginosa group

P. aeruginosa
P. alcaligenes
P. anguilliseptica
P. argentinensis
P. borbori
P. citronellolis
P. flavescens
P. mendocina
P. nitroreducens
P. oleovorans
P. pseudoalcaligenes
P. resinovorans
P. straminea

P. chlororaphis group

P. agarici
P. asplenii
P. aurantiaca
P. aureofaciens
P. chlororaphis
P. corrugata
P. fragi
P. lundensis
P. taetrolens

P. fluorescens group

P. antarctica
P. azotoformans
'P. blatchfordae'
P. brassicacearum
P. brenneri
P. cedrina
P. corrugata
P. fluorescens
P. gessardii
P. libanensis
P. mandelii
P. marginalis
P. mediterranea
P. meridiana
P. migulae
P. mucidolens
P. orientalis
P. panacis
P. proteolytica
P. rhodesiae
P. synxantha
P. thivervalensis
P. tolaasii
P. veronii

P. pertucinogena group

P. denitrificans
P. pertucinogena

P. putida group

P. cremoricolorata
P. fulva
P. monteilii
P. mosselii
P. oryzihabitans
P. parafulva
P. plecoglossicida
P. putida

P. stutzeri group

P. balearica
P. luteola
P. stutzeri

P. syringae group

P. amygdali
P. avellanae
P. caricapapayae
P. cichorii
P. coronafaciens
P. ficuserectae
'P. helianthi'
P. meliae
P. savastanoi
P. syringae
'P. tomato'
P. viridiflava

incertae sedis

P. abietaniphila
P. acidophila
P. agarici
P. alcaliphila
P. alkanolytica
P. amyloderamosa
P. asplenii
P. azotifigens
P. cannabina
P. coenobios
P. congelans
P. costantinii
P. cruciviae
P. delhiensis
P. excibis
P. extremorientalis
P. frederiksbergensis
P. fuscovaginae
P. gelidicola
P. grimontii
P. indica
P. jessenii
P. jinjuensis
P. kilonensis
P. knackmussii
P. koreensis
P. lini
P. lutea
P. moraviensis
P. otitidis
P. pachastrellae
P. palleroniana
P. papaveris
P. peli
P. perolens
P. poae
P. pohangensis
P. protegens
P. psychrophila
P. psychrotolerans
P. rathonis
P. reptilivora
P. resiniphila
P. rhizosphaerae
P. rubescens
P. salomonii
P. segitis
P. septica
P. simiae
P. suis
P. thermotolerans
P. toyotomiensis
P. tremae
P. trivialis
P. turbinellae
P. tuticorinensis
P. umsongensis
P. vancouverensis
P. vranovensis
P. xanthomarina

Pseudomonas is a genus of gammaproteobacteria, belonging to the family Pseudomonadaceae containing 191 validly described species.[1]

Pseudomonas aeruginosa is increasingly recognized as an emerging opportunistic pathogen of clinical relevance. Several different epidemiological studies indicate antibiotic resistance is increasing in clinical isolates.[2]

The members of the genus demonstrate a great deal of metabolic diversity, and consequently are able to colonise a wide range of niches.[3] Their ease of culture in vitro and availability of an increasing number of Pseudomonas strain genome sequences has made the genus an excellent focus for scientific research; the best studied species include P. aeruginosa in its role as an opportunistic human pathogen, the plant pathogen P. syringae, the soil bacterium P. putida, and the plant growth promoting P. fluorescens.

Because of their widespread occurrence in water and in plant seeds such as dicots, the pseudomonads were observed early in the history of microbiology. The generic name Pseudomonas created for these organisms was defined in rather vague terms by Walter Migula in 1894 and 1900 as a genus of Gram-negative, rod-shaped and polar-flagella bacteria with some sporulating species,[4][5] the latter statement was later proved incorrect and was due to refractive granules of reserve materials.[6] Despite the vague description, the type species, Pseudomonas pyocyanea (basonym of Pseudomonas aeruginosa), proved the best descriptor.[6]


  Classification History

Like most bacteria genera the pseudomonad[note 1] last common ancestor lived hundreds of millions of years ago. They were classified at the end of the 19th century.

Additionally, the etymology of the name was not provided and first appeared in the 7th edition of Bergey's manual (=top authority in bacterial nomeclature) as Greek pseudes (ψευδες) "false" and -monas (μονάς / μονάδα) "a single unit", which can mean false unit, but there is also the possibility that Migula intended it as false Monas, a nanoflagellate protist.[6] Subsequently, the term "monad" was used in the early history of microbiology to denote single-celled organisms. Soon afterwards, species matching Migula's description were isolated from many natural niches and many were originally assigned to the genus.

New methodology and the inclusion of approaches based on the studies of conservative macromolecules have reclassified many strains.[7]

Recently, 16S rRNA sequence analysis has redefined the taxonomy of many bacterial species.[8] As a result, the genus Pseudomonas includes strains formerly classified in the genera Chryseomonas and Flavimonas.[9] Other strains previously classified in the genus Pseudomonas are now classified in the genera Burkholderia and Ralstonia.[10][11]

In the year 2000, the complete genome sequence of a Pseudomonas species was determined; more recently, the sequence of other strains have been determined, including P. aeruginosa strains PAO1 (2000), P. putida KT2440 (2002), P. fluorescens Pf-5 (2005), P. syringae pathovar tomato DC3000 (2003), P. syringae pathovar syringae B728a (2005), P. syringae pathovar phaseolica 1448A (2005), P. fluorescens PfO-1 and P. entomophila L48.[7]

An article published in the journal Scientific American in 2008 showed Pseudomonas may be the most common nucleator of ice crystals in clouds, thereby being of utmost importance to the formation of snow and rain around the world.[12]


Members of the genus display the following defining characteristics:[13]

Other characteristics which tend to be associated with Pseudomonas species (with some exceptions) include secretion of pyoverdine, a fluorescent yellow-green siderophore[14] under iron-limiting conditions. Certain Pseudomonas species may also produce additional types of siderophore, such as pyocyanin by Pseudomonas aeruginosa[15] and thioquinolobactin by Pseudomonas fluorescens,.[16] Pseudomonas species also typically give a positive result to the oxidase test, the absence of gas formation from glucose, glucose is oxidised in oxidation/fermentation test using Hugh and Leifson O/F test, beta hemolytic (on blood agar), indole negative, methyl red negative, Voges–Proskauer test negative, and citrate positive.

  Biofilm formation

All species and strains of Pseudomonas are Gram-negative rods, and have historically been classified as strict aerobes. Exceptions to this classification have recently been discovered in Pseudomonas biofilms.[17] A significant number of cells can produce exopolysaccharides known as biofilms. Secretion of exopolysaccharide such as alginate, makes it difficult for pseudomonads to be phagocytosed by mammalian white blood cells.[18] Exopolysaccharide production also contributes to surface-colonising biofilms which are difficult to remove from food preparation surfaces. Growth of pseudomonads on spoiling foods can generate a "fruity" odor.

Pseudomonas have the ability to metabolise a variety of diverse nutrients. Combined with the ability to form biofilms, they are thus able to survive in a variety of unexpected places. For example, they have been found in areas where pharmaceuticals are prepared. A simple carbon source, such as soap residue or cap liner-adhesives is a suitable place for them to thrive. Other unlikely places where they have been found include antiseptics, such as quaternary ammonium compounds, and bottled mineral water.

  Antibiotic resistance

Being Gram-negative bacteria, most Pseudomonas spp. are naturally resistant to penicillin and the majority of related beta-lactam antibiotics, but a number are sensitive to piperacillin, imipenem, ticarcillin, tobramycin, or ciprofloxacin.[18]

This ability to thrive in harsh conditions is a result of their hardy cell wall that contains porins. Their resistance to most antibiotics is attributed to efflux pumps, which pump out some antibiotics before the antibiotics are able to act.

Pseudomonas aeruginosa is a highly relevant opportunistic human pathogen. One of the most worrying characteristics of P. aeruginosa is its low antibiotic susceptibility. This low susceptibility is attributable to a concerted action of multidrug efflux pumps with chromosomally-encoded antibiotic resistance genes (e.g. mexAB-oprM, mexXY, etc.,[19]) and the low permeability of the bacterial cellular envelopes. Besides intrinsic resistance, P. aeruginosa easily develops acquired resistance either by mutation in chromosomally-encoded genes, or by the horizontal gene transfer of antibiotic resistance determinants. Development of multidrug resistance by P. aeruginosa isolates requires several different genetic events that include acquisition of different mutations and/or horizontal transfer of antibiotic resistance genes. Hypermutation favours the selection of mutation-driven antibiotic resistance in P. aeruginosa strains producing chronic infections, whereas the clustering of several different antibiotic resistance genes in integrons favours the concerted acquisition of antibiotic resistance determinants. Some recent studies have shown phenotypic resistance associated to biofilm formation or to the emergence of small-colony-variants may be important in the response of P. aeruginosa populations to antibiotic treatment.[7]


The studies on the taxonomy of this complicated genus groped their way in the dark while following the classical procedures developed for the description and identification of the organisms involved in sanitary bacteriology during the first decades of the 20th century. This situation sharply changed with the proposal to introduce as the central criterion the similarities in the composition and sequences of macromolecular components of the ribosomal RNA. The new methodology clearly showed the genus Pseudomonas, as classically defined, consisted in fact of a conglomerate of genera that could clearly be separated into five so-called rRNA homology groups. Moreover, the taxonomic studies suggested an approach that might prove useful in taxonomic studies of all other prokaryotic groups. A few decades after the proposal of the new genus Pseudomonas by Migula in 1894, the accumulation of species names assigned to the genus reached alarming proportions. At present, the number of species in the current list has contracted more than 90%. In fact, this approximated reduction may be even more dramatic if one considers the present list contains many new names, i.e., relatively few names of the original list survived in the process. The new methodology and the inclusion of approaches based on the studies of conservative macromolecules other than rRNA components, constitutes an effective prescription that helped to reduce Pseudomonas nomenclatural hypertrophy to a manageable size.[7]


  Animal pathogens

Infectious species include P. aeruginosa, P. oryzihabitans, and P. plecoglossicida. P. aeruginosa flourishes in hospital environments, and is a particular problem in this environment since it is the second most common infection in hospitalized patients(nosocomial infections). This pathogenesis may in part be due to the proteins secreted by P. aeruginosa. The bacterium possesses a wide range of secretion systems, which export numerous proteins relevant to the pathogenesis of clinical strains.[20]

  Plant pathogens

P. syringae is a prolific plant pathogen. It exists as over 50 different pathovars, many of which demonstrate a high degree of host plant specificity. There are numerous other Pseudomonas species that can act as plant pathogens, notably all of the other members of the P. syringae subgroup, but P. syringae is the most widespread and best studied.

Although not strictly a plant pathogen, P. tolaasii can be a major agricultural problem, as it can cause bacterial blotch of cultivated mushrooms.[21] Similarly, P. agarici can cause drippy gill in cultivated mushrooms.[22]

  Use as biocontrol agents

Since the mid 1980s, certain members of the Pseudomonas genus have been applied to cereal seeds or applied directly to soils as a way of preventing the growth or establishment of crop pathogens. This practice is generically referred to as biocontrol. The biocontrol properties of P. fluorescens strains (CHA0 or Pf-5 for example) are currently best understood, although it is not clear exactly how the plant growth-promoting properties of P. fluorescens are achieved. Theories include: that the bacteria might induce systemic resistance in the host plant, so it can better resist attack by a true pathogen; the bacteria might out compete other (pathogenic) soil microbes, e.g. by siderophores giving a competitive advantage at scavenging for iron; the bacteria might produce compounds antagonistic to other soil microbes, such as phenazine-type antibiotics or hydrogen cyanide. There is experimental evidence to support all of these theories.[23]

Other notable Pseudomonas species with biocontrol properties include P. chlororaphis, which produces a phenazine-type antibiotic active agent against certain fungal plant pathogens,[24] and the closely related species P. aurantiaca which produces di-2,4-diacetylfluoroglucylmethane, a compound antibiotically active against Gram-positive organisms.[25]

  Use as bioremediation agents

Some members of the genus Pseudomonas are able to metabolise chemical pollutants in the environment, and as a result can be used for bioremediation. Notable species demonstrated as suitable for use as bioremediation agents include:

  Food spoilage agents

As a result of their metabolic diversity, ability to grow at low temperatures and ubiquitous nature, many Pseudomonas spp. can cause food spoilage. Notable examples include dairy spoilage by P. fragi,[34] mustiness in eggs caused by P. taetrolens and P. mudicolens,[35] and P. lundensis, which causes spoilage of milk, cheese, meat, and fish.[36]

  Species previously classified in the genus

Recently, 16S rRNA sequence analysis redefined the taxonomy of many bacterial species previously classified as being in the Pseudomonas genus.[8] Species which moved from the Pseudomonas genus are listed below; clicking on a species will show its new classification. Note that the term 'pseudomonad' does not apply strictly to just the Pseudomonas genus, and can be used to also include previous members such as the genera Burkholderia and Ralstonia.

α proteobacteria: P. abikonensis, P. aminovorans, P. azotocolligans, P. carboxydohydrogena, P. carboxidovorans, P. compransoris, P. diminuta, P. echinoides, P. extorquens, P. lindneri, P. mesophilica, P. paucimobilis, P. radiora, P. rhodos, P. riboflavina, P. rosea, P. vesicularis.

β proteobacteria: P. acidovorans, P. alliicola, P. antimicrobica, P. avenae, P. butanovorae, P. caryophylli, P. cattleyae, P. cepacia, P. cocovenenans, P. delafieldii, P. facilis, P. flava, P. gladioli, P. glathei, P. glumae, P. graminis, P. huttiensis, P. indigofera, P. lanceolata, P. lemoignei, P. mallei, P. mephitica, P. mixta, P. palleronii, P. phenazinium, P. pickettii, P. plantarii, P. pseudoflava, P. pseudomallei, P. pyrrocinia, P. rubrilineans, P. rubrisubalbicans, P. saccharophila, P. solanacearum, P. spinosa, P. syzygii, P. taeniospiralis, P. terrigena, P. testosteroni.

γ-β proteobacteria: P. beteli, P. boreopolis, P. cissicola, P. geniculata, P. hibiscicola, P. maltophilia, P. pictorum.

γ proteobacteria: P. beijerinckii, P. diminuta, P. doudoroffii, P. elongata, P. flectens, P. halodurans, P. halophila, P. iners, P. marina, P. nautica, P. nigrifaciens, P. pavonacea, P. piscicida, P. stanieri.

δ proteobacteria: P. formicans.


There are a number of bacteriophage that infect Pseudomonas, e.g.

  See also


  1. ^ To aid in the flow of the prose in English, genus names can be "trivialised" to form a vernacular name to refer to a member of the genus: for the genus Pseudomonas it is "pseudomonad" (plural: "pseudomonads"), a variant on the non-nominative cases in the Greek declension of monas, monada.[40] For historical reasons, members of several genera that were formerly classified as Pseudomonas species can be referred to as pseudomonads, while the term "fluorescent pseudomonad" refers strictly to current members of the genus Pseudomonas, as these produce pyoverdin, a fluorescent siderophore.[3] The latter term, fluorescent pseudomonad, is distinct from the term P. fluorescens group which is used to distinguish a subset of members of the Pseudomonas sensu stricto and not as a whole.


  1. ^ Pseudomonas entry in LPSN [Euzéby, J.P. (1997). "List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet". Int J Syst Bacteriol 47 (2): 590-2. DOI:10.1099/00207713-47-2-590. ISSN 0020-7713. PMID 9103655. http://ijs.sgmjournals.org/cgi/reprint/47/2/590. ]
  2. ^ Van Eldere J (February 2003). "Multicentre surveillance of Pseudomonas aeruginosa susceptibility patterns in nosocomial infections". J. Antimicrob. Chemother. 51 (2): 347–352. DOI:10.1093/jac/dkg102. PMID 12562701. http://jac.oxfordjournals.org/cgi/content/full/51/2/347. 
  3. ^ a b Madigan M; Martinko J (editors). (2005). Brock Biology of Microorganisms (11th ed.). Prentice Hall. ISBN 0-13-144329-1. 
  4. ^ Migula, W. (1894) Über ein neues System der Bakterien. Arb Bakteriol Inst Karlsruhe 1: 235–328.
  5. ^ Migula, W. (1900) System der Bakterien, Vol. 2. Jena, Germany: Gustav Fischer.
  6. ^ a b c Palleroni, Norberto J. (2010). "The Pseudomonas Story". Environmental Microbiology 12 (6): 1377–1383. DOI:10.1111/j.1462-2920.2009.02041.x. PMID 20553550.  edit
  7. ^ a b c d Cornelis P (editor) (2008). Pseudomonas: Genomics and Molecular Biology (1st ed.). Caister Academic Press. ISBN 1-904455-19-0. [http://www.horizonpress.com/pseudo. http://www.horizonpress.com/pseudo. 
  8. ^ a b Anzai Y, Kim H, Park, JY, Wakabayashi H (2000). "Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence". Int J Syst Evol Microbiol 50 (4): 1563–89. DOI:10.1099/00207713-50-4-1563. PMID 10939664. 
  9. ^ Anzai, Y; Kudo, Y; Oyaizu, H (1997). "The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera". Int J Syst Bacteriol 47 (2): 249–251. DOI:10.1099/00207713-47-2-249. PMID 9103607. 
  10. ^ Yabuuchi, E.; Kosako, Y.; Oyaizu, H.; Yano, I.; Hotta, H.; Hashimoto, Y.; Ezaki, T.; Arakawa, M. (1992). "Proposal of Burkholderia gen. Nov. And transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. Nov". Microbiology and immunology 36 (12): 1251–1275. PMID 1283774.  edit
  11. ^ Yabuuchi, E.; Kosako, Y.; Yano, I.; Hotta, H.; Nishiuchi, Y. (1995). "Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. Nov.: Proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. Nov., Ralstonia solanacearum (Smith 1896) comb. Nov. And Ralstonia eutropha (Davis 1969) comb. Nov". Microbiology and immunology 39 (11): 897–904. PMID 8657018.  edit
  12. ^ Do Microbes Make Snow?
  13. ^ Krieg, Noel (1984). Bergey's Manual of Systematic Bacteriology, Volume 1. Baltimore: Williams & Wilkins. ISBN 0-683-04108-8. 
  14. ^ Meyer JM, Geoffroy VA, Baida N et al. (2002). "Siderophore typing, a powerful tool for the identification of fluorescent and nonfluorescent pseudomonads". Appl. Environ. Microbiol. 68 (6): 2745–2753. DOI:10.1128/AEM.68.6.2745-2753.2002. PMC 123936. PMID 12039729. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=123936. 
  15. ^ Lau GW, Hassett DJ, Ran H, Kong F (2004). "The role of pyocyanin in Pseudomonas aeruginosa infection". Trends in molecular medicine 10 (12): 599–606. DOI:10.1016/j.molmed.2004.10.002. PMID 15567330. 
  16. ^ Matthijs S, Tehrani KA, Laus G, Jackson RW, Cooper RM, Cornelis P (2007). "Thioquinolobactin, a Pseudomonas siderophore with antifungal and anti-Pythium activity". Environ. Microbiol. 9 (2): 425–434. DOI:10.1111/j.1462-2920.2006.01154.x. PMID 17222140. 
  17. ^ Hassett D, Cuppoletti J, Trapnell B, Lymar S, Rowe J, Yoon S, Hilliard G, Parvatiyar K, Kamani M, Wozniak D, Hwang S, McDermott T, Ochsner U (2002). "Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: rethinking antibiotic treatment strategies and drug targets". Adv Drug Deliv Rev 54 (11): 1425–1443. DOI:10.1016/S0169-409X(02)00152-7. PMID 12458153. 
  18. ^ a b Ryan KJ; Ray CG (editors) (2004). Sherris Medical Microbiology (4th ed.). McGraw Hill. ISBN 0-8385-8529-9. 
  19. ^ Poole K (January 2004). "Efflux-mediated multiresistance in Gram-negative bacteria". Clin. Microbiol. Infect. 10 (1): 12–26. DOI:10.1111/j.1469-0691.2004.00763.x. PMID 14706082. http://www3.interscience.wiley.com/resolve/openurl?genre=article&sid=nlm:pubmed&issn=1198-743X&date=2004&volume=10&issue=1&spage=12. 
  20. ^ Hardie (2009). "The Secreted Proteins of Pseudomonas aeruginosa: Their Export Machineries, and How They Contribute to Pathogenesis". Bacterial Secreted Proteins: Secretory Mechanisms and Role in Pathogenesis. Caister Academic Press. ISBN 978-1-904455-42-4. 
  21. ^ Brodey CL, Rainey PB, Tester M, Johnstone K (1991). "Bacterial blotch disease of the cultivated mushroom is caused by an ion channel forming lipodepsipeptide toxin". Molecular Plant–Microbe Interaction 1: 407–11. 
  22. ^ Young JM (1970). "Drippy gill: a bacterial disease of cultivated mushrooms caused by Pseudomonas agarici n. sp". NZ J Agric Res 13: 977–90. 
  23. ^ Haas D, Defago G (2005). "Biological control of soil-borne pathogens by fluorescent pseudomonads". Nature Reviews in Microbiology 3 (4): 307–319. DOI:10.1038/nrmicro1129. PMID 15759041. 
  24. ^ Chin-A-Woeng TF et al. (2000). "Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot". Mol Plant Microbe Interact 13 (12): 1340–1345. DOI:10.1094/MPMI.2000.13.12.1340. PMID 11106026. 
  25. ^ Esipov et al. (1975). "New antibiotically active fluoroglucide from Pseudomonas aurantiaca". Antibiotiki 20 (12): 1077–81. PMID 1225181. 
  26. ^ O'Mahony MM, Dobson AD, Barnes JD, Singleton I (2006). "The use of ozone in the remediation of polycyclic aromatic hydrocarbon contaminated soil". Chemosphere 63 (2): 307–314. DOI:10.1016/j.chemosphere.2005.07.018. PMID 16153687. 
  27. ^ Yen KM, Karl MR, Blatt LM et al. (1991). "Cloning and characterization of a Pseudomonas mendocina KR1 gene cluster encoding toluene-4-monooxygenase". J. Bacteriol. 173 (17): 5315–27. PMC 208241. PMID 1885512. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=208241. 
  28. ^ Huertas MJ, Luque-Almagro VM, Martínez-Luque M et al. (2006). "Cyanide metabolism of Pseudomonas pseudoalcaligenes CECT5344: role of siderophores". Biochem. Soc. Trans. 34 (Pt 1): 152–5. DOI:10.1042/BST0340152. PMID 16417508. 
  29. ^ Nojiri H, Maeda K, Sekiguchi H et al. (2002). "Organization and transcriptional characterization of catechol degradation genes involved in carbazole degradation by Pseudomonas resinovorans strain CA10". Biosci. Biotechnol. Biochem. 66 (4): 897–901. DOI:10.1271/bbb.66.897. PMID 12036072. 
  30. ^ Nam et al. (2003). "A novel catabolic activity of Pseudomonas veronii in biotransformation of pentachlorophenol". Applied Microbiology and Biotechnology 62 (2–3): 284–290. DOI:10.1007/s00253-003-1255-1. PMID 12883877. 
  31. ^ Onaca et al. (2007 Mar 9). "Degradation of alkyl methyl ketones by Pseudomonas veronii". Journal of Bacteriology 189 (10): 3759–3767. DOI:10.1128/JB.01279-06. PMC 1913341. PMID 17351032. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1913341. 
  32. ^ Marqués S, Ramos JL (1993). "Transcriptional control of the Pseudomonas putida TOL plasmid catabolic pathways". Mol. Microbiol. 9 (5): 923–929. DOI:10.1111/j.1365-2958.1993.tb01222.x. PMID 7934920. 
  33. ^ Sepulveda-Torres et al. (1999). "Generation and initial characterization of Pseudomonas stutzeri KC mutants with impaired ability to degrade carbon tetrachloride". Arch Microbiol 171 (6): 424–429. DOI:10.1007/s002030050729. PMID 10369898. 
  34. ^ Pereira, JN, and Morgan, ME (1957 Dec). "Nutrition and physiology of Pseudomonas fragi". J Bacteriol 74 (6): 710–3. PMC 289995. PMID 13502296. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=289995. 
  35. ^ Levine, M, and Anderson, DQ (1932 Apr). "Two New Species of Bacteria Causing Mustiness in Eggs". J Bacteriol 23 (4): 337–47. PMC 533329. PMID 16559557. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=533329. 
  36. ^ Gennari, M, and Dragotto, F (1992 Apr). "A study of the incidence of different fluorescent Pseudomonas species and biovars in the microflora of fresh and spoiled meat and fish, raw milk, cheese, soil and water". J Appl Bacteriol 72 (4): 281–8. PMID 1517169. 
  37. ^ a b Hertveldt, K.; Lavigne, R.; Pleteneva, E.; Sernova, N.; Kurochkina, L.; Korchevskii, R.; Robben, J.; Mesyanzhinov, V. et al. (2005). "Genome Comparison of Pseudomonas aeruginosa Large Phages". Journal of Molecular Biology 354 (3): 536–545. DOI:10.1016/j.jmb.2005.08.075. PMID 16256135.  edit
  38. ^ Lavigne, R.; Noben, J. P.; Hertveldt, K.; Ceyssens, P. J.; Briers, Y.; Dumont, D.; Roucourt, B.; Krylov, V. N. et al. (2006). "The structural proteome of Pseudomonas aeruginosa bacteriophage  KMV". Microbiology 152 (2): 529–534. DOI:10.1099/mic.0.28431-0. PMID 16436440.  edit
  39. ^ a b Ceyssens, P. -J.; Lavigne, R.; Mattheus, W.; Chibeu, A.; Hertveldt, K.; Mast, J.; Robben, J.; Volckaert, G. (2006). "Genomic Analysis of Pseudomonas aeruginosa Phages LKD16 and LKA1: Establishment of the  KMV Subgroup within the T7 Supergroup". Journal of Bacteriology 188 (19): 6924–6931. DOI:10.1128/JB.00831-06. PMC 1595506. PMID 16980495. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1595506.  edit
  40. ^ Buchanan, R. E. (1955). "Taxonomy". Annual Review of Microbiology 9: 1–20. DOI:10.1146/annurev.mi.09.100155.000245. PMID 13259458.  edit

  External links




All translations of Pseudomonas

sensagent's content

  • definitions
  • synonyms
  • antonyms
  • encyclopedia

Dictionary and translator for handheld

⇨ New : sensagent is now available on your handheld

   Advertising ▼

sensagent's office

Shortkey or widget. Free.

Windows Shortkey: sensagent. Free.

Vista Widget : sensagent. Free.

Webmaster Solution


A windows (pop-into) of information (full-content of Sensagent) triggered by double-clicking any word on your webpage. Give contextual explanation and translation from your sites !

Try here  or   get the code


With a SensagentBox, visitors to your site can access reliable information on over 5 million pages provided by Sensagent.com. Choose the design that fits your site.

Business solution

Improve your site content

Add new content to your site from Sensagent by XML.

Crawl products or adds

Get XML access to reach the best products.

Index images and define metadata

Get XML access to fix the meaning of your metadata.

Please, email us to describe your idea.


The English word games are:
○   Anagrams
○   Wildcard, crossword
○   Lettris
○   Boggle.


Lettris is a curious tetris-clone game where all the bricks have the same square shape but different content. Each square carries a letter. To make squares disappear and save space for other squares you have to assemble English words (left, right, up, down) from the falling squares.


Boggle gives you 3 minutes to find as many words (3 letters or more) as you can in a grid of 16 letters. You can also try the grid of 16 letters. Letters must be adjacent and longer words score better. See if you can get into the grid Hall of Fame !

English dictionary
Main references

Most English definitions are provided by WordNet .
English thesaurus is mainly derived from The Integral Dictionary (TID).
English Encyclopedia is licensed by Wikipedia (GNU).


The wordgames anagrams, crossword, Lettris and Boggle are provided by Memodata.
The web service Alexandria is granted from Memodata for the Ebay search.
The SensagentBox are offered by sensAgent.


Change the target language to find translations.
Tips: browse the semantic fields (see From ideas to words) in two languages to learn more.

last searches on the dictionary :

4400 online visitors

computed in 0.078s

I would like to report:
section :
a spelling or a grammatical mistake
an offensive content(racist, pornographic, injurious, etc.)
a copyright violation
an error
a missing statement
please precise:



Company informations

My account



   Advertising ▼

Hibiclens "Sid" Pseudomonas Plush Super-Soft Stuffed "Germ" Toy (6.0 USD)

Commercial use of this term


Commercial use of this term

Severe Infections Caused By Pseudomonas Aeruginosa by Alan Hauser (2003 HC) (65.0 USD)

Commercial use of this term

Pseudomonas Aeruginosa: Clinical Manifestations of Infection and Current Therapy (5.25 USD)

Commercial use of this term

Pseudomonas - Montie, Thomas C. (EDT) 9781489901224 (330.0 USD)

Commercial use of this term

Pseudomonas Aeruginosa As an Opportunistic Pathogen - Campa, Mario (EDT)/ Bendin (123.1 USD)

Commercial use of this term

Iron Uptake in Bacteria with Emphasis on E. coli and Pseudomonas (SpringerBrie.. (35.0 USD)

Commercial use of this term

Pseudomonas Aeruginosa Microbiology, Epidemiology (30.0 USD)

Commercial use of this term

NEW Iron Uptake in Bacteria with Emphasis on E. Coli and Pseudomonas by Ranjan C (62.52 USD)

Commercial use of this term

NEW Pseudomonas Aeruginosa BOOK (Hardback) (231.26 AUD)

Commercial use of this term

Pseudomonas Syringae Pathovars and Related Pathogens - Rudolph (567.93 USD)

Commercial use of this term

Pseudomonas Syringae Pathovars and Related Pathogens - Identification, Epidemiol (368.99 USD)

Commercial use of this term

Pseudomonas Infection and Alginates: Biochemistry, Genetics and Pathology (248.99 USD)

Commercial use of this term

MQ- I WASHED MY HANDS TODAY! CHILDREN'S Pseudomonas aeruginosa PIN BACK #19523 (22.75 USD)

Commercial use of this term

GENERAL LABORATORY PRODUCTS MP3000 Pseudomonas Isolation Agar, PK 100 (170.26 USD)

Commercial use of this term

GENERAL LABORATORY PRODUCTS 250EZ-3000-250 Pseudomonas Isolation Agar,250mL,PK 9 (98.56 USD)

Commercial use of this term