» 
Arabic Bulgarian Chinese Croatian Czech Danish Dutch English Estonian Finnish French German Greek Hebrew Hindi Hungarian Icelandic Indonesian Italian Japanese Korean Latvian Lithuanian Malagasy Norwegian Persian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swedish Thai Turkish Vietnamese
Arabic Bulgarian Chinese Croatian Czech Danish Dutch English Estonian Finnish French German Greek Hebrew Hindi Hungarian Icelandic Indonesian Italian Japanese Korean Latvian Lithuanian Malagasy Norwegian Persian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swedish Thai Turkish Vietnamese

definition - Simple_Network_Management_Protocol

definition of Wikipedia

   Advertizing ▼

Wikipedia

Simple Network Management Protocol

                   
SNMP (Simple Network Management Protocol)
Port(s) 161, 162, 10161, 10162

Simple Network Management Protocol (SNMP) is an "Internet-standard protocol for managing devices on IP networks." Devices that typically support SNMP include routers, switches, servers, workstations, printers, modem racks, and more."[1] It is used mostly in network management systems to monitor network-attached devices for conditions that warrant administrative attention. SNMP is a component of the Internet Protocol Suite as defined by the Internet Engineering Task Force (IETF). It consists of a set of standards for network management, including an application layer protocol, a database schema, and a set of data objects.[2]

SNMP exposes management data in the form of variables on the managed systems, which describe the system configuration. These variables can then be queried (and sometimes set) by managing applications.

Contents

  Overview and basic concepts

  Principle of SNMP Communication

In typical SNMP uses, one or more administrative computers, called managers, have the task of monitoring or managing a group of hosts or devices on a computer network. Each managed system executes, at all times, a software component called an agent which reports information via SNMP to the manager.

Essentially, SNMP agents expose management data on the managed systems as variables. The protocol also permits active management tasks, such as modifying and applying a new configuration through remote modification of these variables. The variables accessible via SNMP are organized in hierarchies. These hierarchies, and other metadata (such as type and description of the variable), are described by Management Information Bases (MIBs).

An SNMP-managed network consists of three key components:

  • Managed device
  • Agent — software which runs on managed devices
  • Network management system (NMS) — software which runs on the manager

A managed device is a network node that implements an SNMP interface that allows unidirectional (read-only) or bidirectional access to node-specific information. Managed devices exchange node-specific information with the NMSs. Sometimes called network elements, the managed devices can be any type of device, including, but not limited to, routers, access servers, switches, bridges, hubs, IP telephones, IP video cameras, computer hosts, and printers.

An agent is a network-management software module that resides on a managed device. An agent has local knowledge of management information and translates that information to or from an SNMP specific form.

A network management system (NMS) executes applications that monitor and control managed devices. NMSs provide the bulk of the processing and memory resources required for network management. One or more NMSs may exist on any managed network.

  Management information base (MIB)

SNMP itself does not define which information (which variables) a managed system should offer. Rather, SNMP uses an extensible design, where the available information is defined by management information bases (MIBs). MIBs describe the structure of the management data of a device subsystem; they use a hierarchical namespace containing object identifiers (OID). Each OID identifies a variable that can be read or set via SNMP. MIBs use the notation defined by ASN.1.

  Protocol details

SNMP operates in the Application Layer of the Internet Protocol Suite (Layer 7 of the OSI model). The SNMP agent receives requests on UDP port 161. The manager may send requests from any available source port to port 161 in the agent. The agent response will be sent back to the source port on the manager. The manager receives notifications (Traps and InformRequests) on port 162. The agent may generate notifications from any available port. When used with Transport Layer Security or Datagram Transport Layer Security requests are received on port 10161 and traps are sent to port 10162.[3].

SNMPv1 specifies five core protocol data units (PDUs). Two other PDUs, GetBulkRequest and InformRequest were added in SNMPv2 and carried over to SNMPv3.

All SNMP PDUs are constructed as follows:

IP header UDP header version community PDU-type request-id error-status error-index variable bindings

The seven SNMP protocol data units (PDUs) are as follows:

  GetRequest

A manager-to-agent request to retrieve the value of a variable or list of variables. Desired variables are specified in variable bindings (values are not used). Retrieval of the specified variable values is to be done as an atomic operation by the agent. A Response with current values is returned.

  SetRequest

A manager-to-agent request to change the value of a variable or list of variables. Variable bindings are specified in the body of the request. Changes to all specified variables are to be made as an atomic operation by the agent. A Response with (current) new values for the variables is returned.

  GetNextRequest

A manager-to-agent request to discover available variables and their values. Returns a Response with variable binding for the lexicographically next variable in the MIB. The entire MIB of an agent can be walked by iterative application of GetNextRequest starting at OID 0. Rows of a table can be read by specifying column OIDs in the variable bindings of the request.

  GetBulkRequest

Optimized version of GetNextRequest. A manager-to-agent request for multiple iterations of GetNextRequest. Returns a Response with multiple variable bindings walked from the variable binding or bindings in the request. PDU specific non-repeaters and max-repetitions fields are used to control response behavior. GetBulkRequest was introduced in SNMPv2.

  Response

Returns variable bindings and acknowledgement from agent to manager for GetRequest, SetRequest, GetNextRequest, GetBulkRequest and InformRequest. Error reporting is provided by error-status and error-index fields. Although it was used as a response to both gets and sets, this PDU was called GetResponse in SNMPv1.

  Trap

Asynchronous notification from agent to manager. Includes current sysUpTime value, an OID identifying the type of trap and optional variable bindings. Destination addressing for traps is determined in an application-specific manner typically through trap configuration variables in the MIB. The format of the trap message was changed in SNMPv2 and the PDU was renamed SNMPv2-Trap.

  InformRequest

Acknowledged asynchronous notification manager to manager[4] or agent to manager. Manager-to-manager notifications were already possible in SNMPv1 (using a Trap), but as SNMP commonly runs over UDP where delivery is not assured and dropped packets are not reported, delivery of a Trap was not guaranteed. InformRequest fixes this by sending back an acknowledgement on receipt. Receiver replies with Response parroting all information in the InformRequest. This PDU was introduced in SNMPv2.[5]

  Development and usage

  Version 1

SNMP version 1 (SNMPv1) is the initial implementation of the SNMP protocol. SNMPv1 operates over protocols such as User Datagram Protocol (UDP), Internet Protocol (IP), OSI Connectionless Network Service (CLNS), AppleTalk Datagram-Delivery Protocol (DDP), and Novell Internet Packet Exchange (IPX). SNMPv1 is widely used and is the de facto network-management protocol in the Internet community.[citation needed]

The first RFCs for SNMP, now known as SNMPv1, appeared in 1988:

  • RFC 1065 — Structure and identification of management information for TCP/IP-based internets
  • RFC 1066 — Management information base for network management of TCP/IP-based internets
  • RFC 1067 — A simple network management protocol

These protocols were obsoleted by:

  • RFC 1155 — Structure and identification of management information for TCP/IP-based internets
  • RFC 1156 — Management information base for network management of TCP/IP-based internets
  • RFC 1157 — A simple network management protocol

After a short time, RFC 1156 (MIB-1) was replaced by more often used:

  • RFC 1213 — Version 2 of management information base (MIB-2) for network management of TCP/IP-based internets

Version 1 has been criticized for its poor security.[6] Authentication of clients is performed only by a "community string", in effect a type of password, which is transmitted in cleartext. The '80s design of SNMP V1 was done by a group of collaborators who viewed the officially sponsored OSI/IETF/NSF (National Science Foundation) effort (HEMS/CMIS/CMIP) as both unimplementable in the computing platforms of the time as well as potentially unworkable. SNMP was approved based on a belief that it was an interim protocol needed for taking steps towards large scale deployment of the Internet and its commercialization. In that time period Internet-standard authentication/security was both a dream and discouraged by focused protocol design groups.[citation needed]

  Version 2

SNMPv2 (RFC 1441RFC 1452), revises version 1 and includes improvements in the areas of performance, security, confidentiality, and manager-to-manager communications. It introduced GetBulkRequest, an alternative to iterative GetNextRequests for retrieving large amounts of management data in a single request. However, the new party-based security system in SNMPv2, viewed by many as overly complex, was not widely accepted.[6]

Community-Based Simple Network Management Protocol version 2, or SNMPv2c, is defined in RFC 1901RFC 1908. In its initial stages, this was also informally known as SNMPv1.5.[citation needed] SNMPv2c comprises SNMPv2 without the controversial new SNMP v2 security model, using instead the simple community-based security scheme of SNMPv1. While officially only a "Draft Standard", this is widely considered the de facto SNMPv2 standard.

User-Based Simple Network Management Protocol version 2, or SNMPv2u, is defined in RFC 1909RFC 1910. This is a compromise that attempts to offer greater security than SNMPv1, but without incurring the high complexity of SNMPv2. A variant of this was commercialized as SNMP v2*, and the mechanism was eventually adopted as one of two security frameworks in SNMP v3.[citation needed]

  SNMPv1 & SNMPv2c interoperability

As presently specified, SNMPv2c is incompatible with SNMPv1 in two key areas: message formats and protocol operations. SNMPv2c messages use different header and protocol data unit (PDU) formats from SNMPv1 messages. SNMPv2c also uses two protocol operations that are not specified in SNMPv1. Furthermore, RFC 2576 defines two possible SNMPv1/v2c coexistence strategies: proxy agents and bilingual network-management systems.

  Proxy agents

A SNMPv2 agent can act as a proxy agent on behalf of SNMPv1 managed devices, as follows:

  • A SNMPv2 NMS issues a command intended for a SNMPv1 agent.
  • The NMS sends the SNMP message to the SNMPv2 proxy agent.
  • The proxy agent forwards Get, GetNext, and Set messages to the SNMPv1 agent unchanged.
  • GetBulk messages are converted by the proxy agent to GetNext messages and then are forwarded to the SNMPv1 agent.

The proxy agent maps SNMPv1 trap messages to SNMPv2 trap messages and then forwards them to the NMS.

  Bilingual network-management system

Bilingual SNMPv2 network-management systems support both SNMPv1 and SNMPv2. To support this dual-management environment, a management application in the bilingual NMS must contact an agent. The NMS then examines information stored in a local database to determine whether the agent supports SNMPv1 or SNMPv2. Based on the information in the database, the NMS communicates with the agent using the appropriate version of SNMP.

  Version 3

Although SNMPv3 makes no changes to the protocol aside from the addition of cryptographic security, it looks much different due to new textual conventions, concepts, and terminology.[1]

SNMPv3 primarily added security and remote configuration enhancements to SNMP.[7]

Security has been the biggest weakness of SNMP since the beginning. Authentication in SNMP Versions 1 and 2 amounts to nothing more than a password (community string) sent in clear text between a manager and agent.[1] Each SNMPv3 message contains security parameters which are encoded as an octet string. The meaning of these security parameters depends on the security model being used.[8]

SNMPv3 provides important security features:[9]

  • Confidentiality - Encryption of packets to prevent snooping by an unauthorized source.
  • Integrity - Message integrity to ensure that a packet has not been tampered with in transit including an optional packet replay protection mechanism.
  • Authentication - to verify that the message is from a valid source.

As of 2004 the IETF recognizes Simple Network Management Protocol version 3 as defined by RFC 3411RFC 3418[10] (also known as STD0062) as the current standard version of SNMP. The IETF has designated SNMPv3 a full Internet standard,[11] the highest maturity level for an RFC. It considers earlier versions to be obsolete (designating them "Historic").[12]

In practice, SNMP implementations often support multiple versions: typically SNMPv1, SNMPv2c, and SNMPv3.[13]

  Implementation issues

SNMP implementations vary across platform vendors. In some cases, SNMP is an added feature, and is not taken seriously enough to be an element of the core design. Some major equipment vendors tend to over-extend their proprietary command line interface (CLI) centric configuration and control systems.[14][not in citation given]

SNMP's seemingly simple tree structure and linear indexing may not always be understood well enough within the internal data structures that are elements of a platform's basic design. Consequently, processing SNMP queries on certain data sets may result in higher CPU utilization than necessary. One example of this would be large routing tables, such as BGP or IGP.[citation needed]

  Resource indexing

Modular devices may dynamically increase or decrease their SNMP indices (aka instances) whenever slotted hardware is added or removed. Although this is most common with hardware, virtual interfaces have the same effect. Index values are typically assigned at boot time and remain fixed until the next reboot. Hardware or virtual entities added while the device is 'live' may have their indices assigned at the end of the existing range and possibly reassigned at the next reboot. Network inventory and monitoring tools need to have the device update capability by properly reacting to the cold start trap from the device reboot in order to avoid corruption and mismatch of polled data.

Index assignments for an SNMP device instance may change from poll to poll mostly as a result of changes initiated by the system admin. If information is needed for a particular interface, it is imperative to determine the SNMP index before retrieving the data needed. Generally, a description table like ifDescr will map a user friendly name like Serial 0/1 (Blade 0, port 1) to a SNMP index.

  Security implications

  • SNMP versions 1 and 2c are subject to packet sniffing of the clear text community string from the network traffic, because they do not implement encryption.
  • All versions of SNMP are subject to brute force and dictionary attacks for guessing the community strings, authentication strings, authentication keys, encryption strings, or encryption keys, because they do not implement a challenge-response handshake.
  • Although SNMP works over TCP and other protocols, it is most commonly used over UDP that is connectionless and vulnerable to IP spoofing attacks. Thus, all versions are subject to bypassing device access lists that might have been implemented to restrict SNMP access, though SNMPv3's other security mechanisms should prevent a successful attack.
  • SNMP's powerful configuration (write) capabilities are not being fully utilized by many vendors, partly because of a lack of security in SNMP versions before SNMPv3 and partly because many devices simply are not capable of being configured via individual MIB object changes.
  • SNMP tops the list of the SANS Institute's Common Default Configuration Issues with the issue of default SNMP community strings set to ‘public’ and ‘private’ and was number ten on the SANS Top 10 Most Critical Internet Security Threats for the year 2000.

  Autodiscovery

SNMP by itself is simply a protocol for collecting and organizing information. Most toolsets implementing SNMP offer some form of discovery mechanism, a standardized collection of data common to most platforms and devices, to get a new user or implementor started. One of these features is often a form of automatic discovery, where new devices discovered in the network are polled automatically. For SNMPv1 and SNMPv2c, this presents a security risk, in that your SNMP read communities will be broadcast in cleartext to the target device. While security requirements and risk profiles vary from organization to organization, care should be taken when using a feature like this, with special regard to common environments such as mixed-tenant datacenters, server hosting and colocation facilities, and similar environments.

  RFC references

  • RFC 1155 (STD 16) — Structure and Identification of Management Information for the TCP/IP-based Internets
  • RFC 1156 (Historic) — Management Information Base for Network Management of TCP/IP-based internets
  • RFC 1157 (Historic) — A Simple Network Management Protocol (SNMP)
  • RFC 1213 (STD 17) — Management Information Base for Network Management of TCP/IP-based internets: MIB-II
  • RFC 1452 (Informational) — Coexistence between version 1 and version 2 of the Internet-standard Network Management Framework (Obsoleted by RFC 1908)
  • RFC 1901 (Experimental) — Introduction to Community-based SNMPv2
  • RFC 1902 (Draft Standard) — Structure of Management Information for SNMPv2 (Obsoleted by RFC 2578)
  • RFC 1908 (Standards Track) — Coexistence between Version 1 and Version 2 of the Internet-standard Network Management Framework
  • RFC 2570 (Informational) — Introduction to Version 3 of the Internet-standard Network Management Framework (Obsoleted by RFC 3410)
  • RFC 2578 (STD 58) — Structure of Management Information Version 2 (SMIv2)
  • RFC 3410 (Informational) — Introduction and Applicability Statements for Internet Standard Management Framework
  • STD 62
    • RFC 3411 — An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks
    • RFC 3412 — Message Processing and Dispatching for the Simple Network Management Protocol (SNMP)
    • RFC 3413 — Simple Network Management Protocol (SNMP) Applications
    • RFC 3414 — User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)
    • RFC 3415 — View-based Access Control Model (VACM) for the Simple Network Management Protocol (SNMP)
    • RFC 3416 — Version 2 of the Protocol Operations for the Simple Network Management Protocol (SNMP)
    • RFC 3417 — Transport Mappings for the Simple Network Management Protocol (SNMP)
    • RFC 3418 — Management Information Base (MIB) for the Simple Network Management Protocol (SNMP)
  • RFC 3430 (Experimental) — Simple Network Management Protocol (SNMP) over Transmission Control Protocol (TCP) Transport Mapping
  • RFC 3584 (BCP 74) — Coexistence between Version 1, Version 2, and Version 3 of the Internet-standard Network Management Framework
  • RFC 3826 (Proposed) — The Advanced Encryption Standard (AES) Cipher Algorithm in the SNMP User-based Security Model
  • RFC 5343 (Proposed) — Simple Network Management Protocol (SNMP) Context EngineID Discovery
  • RFC 5590 (Draft) — Transport Subsystem for the Simple Network Management Protocol (SNMP)
  • RFC 5591 (Draft) — Transport Security Model for the Simple Network Management Protocol (SNMP)
  • RFC 5592 (Proposed) — Secure Shell Transport Model for the Simple Network Management Protocol (SNMP)
  • RFC 5608 (Proposed) — Remote Authentication Dial-In User Service (RADIUS) Usage for Simple Network Management Protocol (SNMP) Transport Models.
  • RFC 6353 (Draft) — Transport Layer Security (TLS) Transport Model for the Simple Network Management Protocol (SNMP)

  See also

  References

  1. ^ a b c Douglas R. Mauro & Kevin J. Schmidt. (2001). Essential SNMP (1st ed.). Sebastopol, CA: O’Reilly & Associates. 
  2. ^ RFC 3411 — An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks
  3. ^ RFC 6353 Section 10
  4. ^ Douglas R. Mauro; Kevin J. Schmidt (July 2001), Essential SNMP, O'Reilly, ISBN 0-596-00020-0, http://docstore.mik.ua/orelly/networking_2ndEd/snmp/ch02_06.htm, "Finally, SNMPv2 provides an inform mechanism, which allows for manager-to-manager communication." 
  5. ^ SNMP Inform Requests, Cisco, http://www.cisco.com/en/US/docs/ios/11_3/feature/guide/snmpinfm.html, retrieved 2011-12-09 
  6. ^ a b "Security in SNMPv3 versus SNMPv1 or v2c". http://www.aethis.com/solutions/snmp_research/snmpv3_vs_wp.pdf. Retrieved 2010-11-29. 
  7. ^ In This Issue: SNMP Version 3 The Simple Times ISSN 1060-6080
  8. ^ David Zeltserman (1999). A Practical Guide to SNMPv3 and Network Management. Upper Saddle River, NJ: Prentice Hall PTR. 
  9. ^ "SNMPv3". Cisco Systems. Archived from the original on 2011-07-19. http://www.webcitation.org/60I4lHgQR. 
  10. ^ "SNMP Version 3". Institute of Operating Systems and Computer Networks. http://www.ibr.cs.tu-bs.de/projects/snmpv3/. Retrieved 2010-05-07. 
  11. ^ RFC Editor List of current Internet Standards (STDs)
  12. ^ RFC Editor List of HISTORIC RFCs
  13. ^ RFC 3584 "Coexistence between Version 1, Version 2, and Version 3 of the Internet-standard Network Management Framework"
  14. ^ "SNMP Research presentations in favor of standards-based management over proprietary CLIs". SNMP Research. http://www.snmp.com/conferences/. Retrieved 2010-10-12. 

  External links

   
               

 

All translations of Simple_Network_Management_Protocol


sensagent's content

  • definitions
  • synonyms
  • antonyms
  • encyclopedia

Dictionary and translator for handheld

⇨ New : sensagent is now available on your handheld

   Advertising ▼

sensagent's office

Shortkey or widget. Free.

Windows Shortkey: sensagent. Free.

Vista Widget : sensagent. Free.

Webmaster Solution

Alexandria

A windows (pop-into) of information (full-content of Sensagent) triggered by double-clicking any word on your webpage. Give contextual explanation and translation from your sites !

Try here  or   get the code

SensagentBox

With a SensagentBox, visitors to your site can access reliable information on over 5 million pages provided by Sensagent.com. Choose the design that fits your site.

Business solution

Improve your site content

Add new content to your site from Sensagent by XML.

Crawl products or adds

Get XML access to reach the best products.

Index images and define metadata

Get XML access to fix the meaning of your metadata.


Please, email us to describe your idea.

WordGame

The English word games are:
○   Anagrams
○   Wildcard, crossword
○   Lettris
○   Boggle.

Lettris

Lettris is a curious tetris-clone game where all the bricks have the same square shape but different content. Each square carries a letter. To make squares disappear and save space for other squares you have to assemble English words (left, right, up, down) from the falling squares.

boggle

Boggle gives you 3 minutes to find as many words (3 letters or more) as you can in a grid of 16 letters. You can also try the grid of 16 letters. Letters must be adjacent and longer words score better. See if you can get into the grid Hall of Fame !

English dictionary
Main references

Most English definitions are provided by WordNet .
English thesaurus is mainly derived from The Integral Dictionary (TID).
English Encyclopedia is licensed by Wikipedia (GNU).

Copyrights

The wordgames anagrams, crossword, Lettris and Boggle are provided by Memodata.
The web service Alexandria is granted from Memodata for the Ebay search.
The SensagentBox are offered by sensAgent.

Translation

Change the target language to find translations.
Tips: browse the semantic fields (see From ideas to words) in two languages to learn more.

last searches on the dictionary :

4397 online visitors

computed in 0.047s

   Advertising ▼

I would like to report:
section :
a spelling or a grammatical mistake
an offensive content(racist, pornographic, injurious, etc.)
a copyright violation
an error
a missing statement
other
please precise:

Advertize

Partnership

Company informations

My account

login

registration

   Advertising ▼