﻿ Symmetric_graph : definition of Symmetric_graph and synonyms of Symmetric_graph (English)
 »
Arabic Bulgarian Chinese Croatian Czech Danish Dutch English Estonian Finnish French German Greek Hebrew Hindi Hungarian Icelandic Indonesian Italian Japanese Korean Latvian Lithuanian Malagasy Norwegian Persian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swedish Thai Turkish Vietnamese
Arabic Bulgarian Chinese Croatian Czech Danish Dutch English Estonian Finnish French German Greek Hebrew Hindi Hungarian Icelandic Indonesian Italian Japanese Korean Latvian Lithuanian Malagasy Norwegian Persian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swedish Thai Turkish Vietnamese

# definition - Symmetric_graph

definition of Wikipedia

# Symmetric graph

The Petersen graph is a (cubic) symmetric graph. Any pair of adjacent vertices can be mapped to another by an automorphism, since any five-vertex ring can be mapped to any other.

In the mathematical field of graph theory, a graph G is symmetric (or arc-transitive) if, given any two pairs of adjacent vertices u1v1 and u2v2 of G, there is an automorphism

f : V(G) → V(G)

such that

f(u1) = u2 and f(v1) = v2.[1]

In other words, a graph is symmetric if its automorphism group acts transitively upon ordered pairs of adjacent vertices (that is, upon edges considered as having a direction).[2] Such a graph is sometimes also called 1-arc-transitive[2] or flag-transitive.[3]

By definition (ignoring u1 and u2), a symmetric graph without isolated vertices must also be vertex transitive.[1] Since the definition above maps one edge to another, a symmetric graph must also be edge transitive. However, an edge-transitive graph need not be symmetric, since ab might map to cd, but not to dc. Semi-symmetric graphs, for example, are edge-transitive and regular, but not vertex-transitive.

 Graph families defined by their automorphisms distance-transitive $\rightarrow$ distance-regular $\leftarrow$ strongly regular $\downarrow$ symmetric (arc-transitive) $\leftarrow$ t-transitive, t ≥ 2 $\downarrow$(if connected) vertex- and edge-transitive $\rightarrow$ edge-transitive and regular $\rightarrow$ edge-transitive $\downarrow$ $\downarrow$ vertex-transitive $\rightarrow$ regular $\uparrow$ Cayley graph skew-symmetric asymmetric

Every connected symmetric graph must thus be both vertex-transitive and edge-transitive, and the converse is true for graphs of odd degree.[3] However, for even degree, there exist connected graphs which are vertex-transitive and edge-transitive, but not symmetric.[4] Such graphs are called half-transitive.[5] The smallest connected half-transitive graph is Holt's graph, with degree 4 and 27 vertices.[1][6] Confusingly, some authors use the term "symmetric graph" to mean a graph which is vertex-transitive and edge-transitive, rather than an arc-transitive graph. Such a definition would include half-transitive graphs, which are excluded under the definition above.

A distance-transitive graph is one where instead of considering pairs of adjacent vertices (i.e. vertices a distance of 1 apart), the definition covers two pairs of vertices, each the same distance apart. Such graphs are automatically symmetric, by definition.[1]

A t-arc is defined to be a sequence of t+1 vertices, such that any two consecutive vertices in the sequence are adjacent, and with any repeated vertices being more than 2 steps apart. A t-transitive graph is a graph such that the automorphism group acts transitively on t-arcs, but not on (t+1)-arcs. Since 1-arcs are simply edges, every symmetric graph of degree 3 or more must be t-transitive for some t, and the value of t can be used to further classify symmetric graphs. The cube is 2-transitive, for example.[1]

## Examples

Combining the symmetry condition with the restriction that graphs be cubic (i.e. all vertices have degree 3) yields quite a strong condition, and such graphs are rare enough to be listed. The Foster census and its extensions provide such lists.[7] The Foster census was begun in the 1930s by Ronald M. Foster while he was employed by Bell Labs,[8] and in 1988 (when Foster was 92[1]) the then current Foster census (listing all cubic symmetric graphs up to 512 vertices) was published in book form.[9] The first thirteen items in the list are cubic symmetric graphs with up to 30 vertices[10][11] (ten of these are also distance transitive; the exceptions are as indicated):

Vertices Diameter Girth Graph Notes
4 1 3 The complete graph K4 distance transitive, 2-transitive
6 2 4 The complete bipartite graph K3,3 distance transitive, 3-transitive
8 3 4 The vertices and edges of the cube distance transitive, 2-transitive
10 2 5 The Petersen graph distance transitive, 3-transitive
14 3 6 The Heawood graph distance transitive, 4-transitive
16 4 6 The Möbius–Kantor graph 2-transitive
18 4 6 The Pappus graph distance transitive, 3-transitive
20 5 5 The vertices and edges of the dodecahedron distance transitive, 2-transitive
20 5 6 The Desargues graph distance transitive, 3-transitive
24 4 6 The Nauru graph (the generalized Petersen graph G(12,5)) 2-transitive
26 5 6 The F26A graph[11] 1-transitive
28 4 7 The Coxeter graph distance transitive, 3-transitive
30 4 8 The Tutte–Coxeter graph distance transitive, 5-transitive

Other well known cubic symmetric graphs are the Dyck graph, the Foster graph and the Biggs–Smith graph. The ten distance-transitive graphs listed above, together with the Foster graph and the Biggs–Smith graph, are the only cubic distance-transitive graphs.

Non-cubic symmetric graphs include cycle graphs (of degree 2), complete graphs (of degree 4 or more when there are 5 or more vertices), hypercube graphs (of degree 4 or more when there are 16 or more vertices), and the graphs formed by the vertices and edges of the octahedron, icosahedron, cuboctahedron, and icosidodecahedron. The Rado graph forms an example of a symmetric graph with infinitely many vertices and infinite degree.

## Properties

The vertex-connectivity of a symmetric graph is always equal to the degree d.[3] In contrast, for vertex-transitive graphs in general, the vertex-connectivity is bounded below by 2(d+1)/3.[2]

A t-transitive graph of degree 3 or more has girth at least 2(t–1). However, there are no finite t-transitive graphs of degree 3 or more for t ≥ 8. In the case of the degree being exactly 3 (cubic symmetric graphs), there are none for t ≥ 6.

## References

1. Biggs, Norman (1993). Algebraic Graph Theory (2nd ed.). Cambridge: Cambridge University Press. pp. 118–140. ISBN 0-521-45897-8.
2. ^ a b c Godsil, Chris; Royle, Gordon (2001). Algebraic Graph Theory. New York: Springer. p. 59. ISBN 0-387-95220-9.
3. ^ a b c Babai, L (1996). "Automorphism groups, isomorphism, reconstruction". In Graham, R; Groetschel, M; Lovasz, L. Handbook of Combinatorics. Elsevier.
4. ^ Bouwer, Z. "Vertex and Edge Transitive, But Not 1-Transitive Graphs." Canad. Math. Bull. 13, 231–237, 1970.
5. ^ Gross, J.L. and Yellen, J. (2004). Handbook of Graph Theory. CRC Press. p. 491. ISBN 1-58488-090-2.
6. ^ Holt, Derek F. (1981). "A graph which is edge transitive but not arc transitive". Journal of Graph Theory 5 (2): 201–204. DOI:10.1002/jgt.3190050210. .
7. ^ Marston Conder, Trivalent symmetric graphs on up to 768 vertices, J. Combin. Math. Combin. Comput, vol. 20, pp. 41–63
8. ^ Foster, R. M. "Geometrical Circuits of Electrical Networks." Transactions of the American Institute of Electrical Engineers 51, 309–317, 1932.
9. ^ "The Foster Census: R.M. Foster's Census of Connected Symmetric Trivalent Graphs", by Ronald M. Foster, I.Z. Bouwer, W.W. Chernoff, B. Monson and Z. Star (1988) ISBN 0-919611-19-2
10. ^ Biggs, p. 148
11. ^ a b Weisstein, Eric W., "Cubic Symmetric Graph", from Wolfram MathWorld.

sensagent's content

• definitions
• synonyms
• antonyms
• encyclopedia

Dictionary and translator for handheld

New : sensagent is now available on your handheld

sensagent's office

Shortkey or widget. Free.

Windows Shortkey: . Free.

Vista Widget : . Free.

Webmaster Solution

Alexandria

A windows (pop-into) of information (full-content of Sensagent) triggered by double-clicking any word on your webpage. Give contextual explanation and translation from your sites !

Try here  or   get the code

SensagentBox

With a SensagentBox, visitors to your site can access reliable information on over 5 million pages provided by Sensagent.com. Choose the design that fits your site.

WordGame

The English word games are:
○   Anagrams
○   Wildcard, crossword
○   Lettris
○   Boggle.

Lettris

Lettris is a curious tetris-clone game where all the bricks have the same square shape but different content. Each square carries a letter. To make squares disappear and save space for other squares you have to assemble English words (left, right, up, down) from the falling squares.

boggle

Boggle gives you 3 minutes to find as many words (3 letters or more) as you can in a grid of 16 letters. You can also try the grid of 16 letters. Letters must be adjacent and longer words score better. See if you can get into the grid Hall of Fame !

English dictionary
Main references

Most English definitions are provided by WordNet .
English thesaurus is mainly derived from The Integral Dictionary (TID).
English Encyclopedia is licensed by Wikipedia (GNU).

The wordgames anagrams, crossword, Lettris and Boggle are provided by Memodata.
The web service Alexandria is granted from Memodata for the Ebay search.
The SensagentBox are offered by sensAgent.

Translation

Change the target language to find translations.
Tips: browse the semantic fields (see From ideas to words) in two languages to learn more.

last searches on the dictionary :

3817 online visitors

computed in 0.046s

I would like to report:
section :
a spelling or a grammatical mistake
an offensive content(racist, pornographic, injurious, etc.)