» 
Arabic Bulgarian Chinese Croatian Czech Danish Dutch English Estonian Finnish French German Greek Hebrew Hindi Hungarian Icelandic Indonesian Italian Japanese Korean Latvian Lithuanian Malagasy Norwegian Persian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swedish Thai Turkish Vietnamese
Arabic Bulgarian Chinese Croatian Czech Danish Dutch English Estonian Finnish French German Greek Hebrew Hindi Hungarian Icelandic Indonesian Italian Japanese Korean Latvian Lithuanian Malagasy Norwegian Persian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swedish Thai Turkish Vietnamese

definitions - Telemedicine

Telemedicine (n.)

1.(MeSH)Delivery of health services via remote telecommunications. This includes interactive consultative and diagnostic services.

   Advertizing ▼

definition (more)

definition of Wikipedia

synonyms - Telemedicine

   Advertizing ▼

phrases

analogical dictionary


telemedicine (n.)


Wikipedia

Telemedicine

                   
  U.S. Navy medical staff being trained in the use of handheld telemedical devices (2006).

Telemedicine is the use of telecommunication and information technologies in order to provide clinical health care at a distance. It helps eliminate distance barriers and can improve access to medical services that would often not be consistently available in distant rural communities. It is also used to save lives in critical care and emergency situations.

Although there were distant precursors to telemedicine, it is essentially a product of 20th century telecommunication and information technologies. These technologies permit communications between patient and medical staff with both convenience and fidelity, as well as the transmission of medical, imaging and health informatics data from one site to another.

Early forms of telemedicine achieved with telephone and radio have been supplemented with videotelephony, advanced diagnostic methods supported by distributed client/server applications, and additionally with telemedical devices to support in-home care.[1]

Contents

  Disambiguation

Other expressions similar to telemedicine are the terms "telehealth" and "eHealth", which are frequently used to denote broader definitions of remote healthcare not always involving active clinical treatments.[2] Telehealth and eHealth are at times incorrectly interchanged with telemedicine. Like the terms "medicine" and "health care", telemedicine often refers only to the provision of clinical services while the term telehealth can refer to clinical and non-clinical services involving medical education, administration, and research.[3]

The term eHealth is often used, particularly in the U.K. and Europe, as an umbrella term that includes telehealth, electronic medical records, and other components of health information technology.

  Early precursors

In its early manifestations, African villagers used smoke signals to warn people to stay away from the village in case of serious disease.[4][5] In the early 1900s, people living in remote areas of Australia used two-way radios, powered by a dynamo driven by a set of bicycle pedals, to communicate with the Royal Flying Doctor Service of Australia.

  Types of telemedicine

  Categories

Telemedicine can be broken into three main categories: store-and-forward, remote monitoring and (real-time) interactive services.

Store-and-forward telemedicine involves acquiring medical data (like medical images, biosignals etc.) and then transmitting this data to a doctor or medical specialist at a convenient time for assessment offline.[2] It does not require the presence of both parties at the same time.[1] Dermatology (cf: teledermatology), radiology, and pathology are common specialties that are conducive to asynchronous telemedicine. A properly structured medical record preferably in electronic form should be a component of this transfer. A key difference between traditional in-person patient meetings and telemedicine encounters is the omission of an actual physical examination and history. The 'store-and-forward' process requires the clinician to rely on a history report and audio/video information in lieu of a physical examination.

Remote monitoring, also known as self-monitoring or testing, enables medical professionals to monitor a patient remotely using various technological devices. This method is primarily used for managing chronic diseases or specific conditions, such as heart disease, diabetes mellitus, or asthma. These services can provide comparable health outcomes to traditional in-person patient encounters, supply greater satisfaction to patients, and may be cost-effective.

Interactive telemedicine services provide real-time interactions between patient and provider, to include phone conversations, online communication and home visits.[1] Many activities such as history review, physical examination, psychiatric evaluations and ophthalmology assessments can be conducted comparably to those done in traditional face-to-face visits. In addition, "clinician-interactive" telemedicine services may be less costly than in-person clinical visit

  Emergency telemedicine

Common daily emergency telemedicine is performed by SAMU Regulator Physicians in France, Spain, Chile, Brazil. Aircraft and maritime emergencies are also handled by SAMU centres in Paris, Lisbon and Toulouse.[6]

A recent study identified three major barriers to adoption of telemedicine in emergency and critical care units. They include:

  • regulatory challenges related to the difficulty and cost of obtaining licensure across multiple states, malpractice protection and privileges at multiple facilities
  • Lack of acceptance and reimbursement by government payers and some commercial insurance carriers creating a major financial barrier, which places the investment burden squarely upon the hospital or healthcare system.
  • Cultural barriers occurring from the lack of desire, or unwillingness, of some physicians to adapt clinical paradigms for telemedicine applications.[7]

  General health care delivery

  Benefits and uses

Telemedicine can be extremely beneficial for people living in isolated communities and remote regions and is currently being applied in virtually all medical domains. Patients who live in such areas can be seen by a doctor or specialist, who can provide an accurate and complete examination, while the patient may not have to travel or wait the normal distances or times like those from conventional hospital or GP visits. Recent developments in mobile collaboration technology with the use of hand-held mobile devices allow healthcare professionals in multiple locations the ability to view, discuss and assess patient issues as if they were in the same room.[8]

Telemedicine can be used as a teaching tool, by which experienced medical staff can observe, show and instruct medical staff in another location, more effective or faster examination techniques. It improved access to healthcare for patients in remote locations. "Telemedicine has been shown to reduce the cost of healthcare and increase efficiency through better management of chronic diseases,shared health professional staffing, reduced travel times, and fewer or shorter hospital stays." Several studies have documented increased patient satisfaction of telemedicine over the past fifteen years.[9]

The first interactive telemedicine system, operating over standard telephone lines, for remotely diagnosing and treating patients requiring cardiac resuscitation (defibrillation) was developed and marketed by MedPhone Corporation in 1989 under the leadership of its president and founder, S.Eric Wachtel. A year later the company introduced a mobile cellular version, the MDphone. Twelve hospitals in the U.S. served as receiving and treatment centers.[10]

Telemonitoring is a medical practice that involves remotely monitoring patients who are not at the same location as the health care provider. In general, a patient will have a number of monitoring devices at home, and the results of these devices will be transmitted via telephone to the health care provider. Telemonitoring is a convenient way for patients to avoid travel and to perform some of the more basic work of healthcare for themselves.

In addition to objective technological monitoring, most telemonitoring programs include subjective questioning regarding the patient's health and comfort. This questioning can take place automatically over the phone, or telemonitoring software can help keep the patient in touch with the health care provider. The provider can then make decisions about the patient's treatment based on a combination of subjective and objective information similar to what would be revealed during an on-site appointment.

Some of the more common things that telemonitoring devices keep track of include blood pressure, heart rate, weight, blood glucose, and hemoglobin. Telemonitoring is capable of providing information about any vital signs, as long as the patient has the necessary monitoring equipment at his or her location. Depending on the severity of the patient's condition, the provider may check these statistics on a daily or weekly basis to determine the best course of treatment.

The first Ayurvedic telemedicine center was established in India in 2007 by Partap Chauhan, an Indian Ayurvedic doctor and the Director of Jiva Ayurveda. Teledoc used Nokia phones running Javascript to link mobile ayurvedic field techs with doctors in the Jiva Institute clinic; at its peak, Teledoc reached about 1,000 villagers per month in Haryana province, primarily treating chronic diseases such as diabetes.

Monitoring a patient at home using known devices like blood pressure monitors and transferring the information to a caregiver is a fast growing emerging service. These remote monitoring solutions have a focus on current high morbidity chronic diseases and are mainly deployed for the First World. In developing countries a new way of practicing telemedicine is emerging better known as Primary Remote Diagnostic Visits, whereby a doctor uses devices to remotely examine and treat a patient. This new technology and principle of practicing medicine holds significant promise of improving on major health care delivery problems, in for instance, Southern Africa, because Primary Remote Diagnostic Consultations not only monitors an already diagnosed chronic disease, but has the promise to diagnose and manage the diseases patients will typically visit a general practitioner for.

  Telenursing

Telenursing refers to the use of telecommunications and information technology in order to provide nursing services in health care whenever a large physical distance exists between patient and nurse, or between any number of nurses. As a field it is part of telehealth, and has many points of contacts with other medical and non-medical applications, such as telediagnosis, teleconsultation, telemonitoring, etc.

Telenursing is achieving significant growth rates in many countries due to several factors: the preoccupation in reducing the costs of health care, an increase in the number of aging and chronically ill population, and the increase in coverage of health care to distant, rural, small or sparsely populated regions. Among its benefits, telenursing may help solve increasing shortages of nurses; to reduce distances and save travel time, and to keep patients out of hospital. A greater degree of job satisfaction has been registered among telenurses.[11]

  Telepharmacy

Telepharmacy is another growing trend for providing pharmaceutical care to patients at remote locations where they may not have physical contact with pharmacists. It encompasses drug therapy monitoring, patient counseling, prior authorization, refill authorization, monitoring formulary compliance with the aid of teleconferencing or videoconferencing. In addition, video-conferencing is vastly utilized in pharmacy for other purposes, such as providing education, training, and performing several management functions.[12]

A notable telepharmacy program is in the United States, conducted at a federally qualified community health center, Community Health Association of Spokane (CHAS) in 2001, which allowed the low cost medication dispensing under federal government’s program. This program utilized videotelephony for dispensing medication and patient counseling at six urban and rural clinics. There were one base pharmacy and five remote clinics in several areas of Spokane, Washington under the telepharmacy program at CHAS. "The base pharmacy provided traditional pharmacy study to the clients at Valley clinic and served as the hub pharmacy for the other remote clinics."

The remote site dispensing and patient education process was described as follows: once the prescription is sent from the remote clinics to the base pharmacy, the pharmacist verifies the hard copy and enters the order. The label is also generated simultaneously, and the label queue is transmitted to the remote site. When the label queue appears on the medication dispensing cabinet known as ADDS, the authorized person can access the medicine from ADDS followed by medication barcode scanning, and the printing and scanning of labels. Once those steps are done, the remote site personnel are connected to the pharmacist at base pharmacy via videoconferencing for medication verification and patient counseling.[13]

In recent time, the U.S. Navy Bureau of Medicine took a significant step in advancing telepharmacy worldwide. The telepharmacy program was piloted in 2006 "in the regions served by Naval Hospital Pensacola, Florida, and Naval Hospital Bremerton, Washington." Starting from March 2010, the Navy expanded its telepharmacy system to more sites throughout the world. According to Navy Lieutenant Justin Eubanks at Navy Hospital Pensacola, Florida, telepharmacy would be initiated at more than 100 Navy sites covering four continents by the end of 2010.[14]

  Telerehabilitation

Telerehabilitation (or e-rehabilitation[15][16]) is the delivery of rehabilitation services over telecommunication networks and the Internet. Most types of services fall into two categories: clinical assessment (the patient’s functional abilities in his or her environment), and clinical therapy. Some fields of rehabilitation practice that have explored telerehabilitation are: neuropsychology, speech-language pathology, audiology, occupational therapy, and physical therapy. Telerehabilitation can deliver therapy to people who cannot travel to a clinic because the patient has a disability or because of travel time. Telerehabilitation also allows experts in rehabilitation to engage in a clinical consultation at a distance.

Most telerehabilitation is highly visual. As of 2006 the most commonly used modalities are via webcams, videoconferencing, phone lines, videophones and webpages containing rich Internet applications. The visual nature of telerehabilitation technology limits the types of rehabilitation services that can be provided. It is most widely used for neuropsychological rehabilitation; fitting of rehabilitation equipment such as wheelchairs, braces or artificial limbs; and in speech-language pathology. Rich internet applications for neuropsychological rehabilitation (aka cognitive rehabilitation) of cognitive impairment (from many etiologies) was first introduced in 2001. This endeavor has recently (2006) expanded as a teletherapy application for cognitive skills enhancement programs for school children. Tele-audiology (hearing assessments) is a growing application. As of 2006, telerehabilitation in the practice of occupational therapy and physical therapy are very limited, perhaps because these two disciplines are more "hands on".

Two important areas of telerehabilitation research are (1) demonstrating equivalence of assessment and therapy to in-person assessment and therapy, and (2) building new data collection systems to digitize information that a therapist can use in practice. Ground-breaking research in telehaptics (the sense of touch) and virtual reality may broaden the scope of telerehabilitation practice, in the future.

In the United States, the National Institute on Disability and Rehabilitation Research's (NIDRR) [1] supports research and the development of telerehabilitation. NIDRR's grantees include the "Rehabilitation Engineering and Research Center" (RERC) at the University of Pittsburgh, the Rehabilitation Institute of Chicago, the State University of New York at Buffalo, and the National Rehabilitation Hospital in Washington DC. Other federal funders of research are the Veterans Administration, the Health Services Research Administration in the US Department of Health and Human Services, and the Department of Defense. Outside the United States, excellent research is conducted in Australia and Europe.

As of 2006, only a few health insurers in the United States will reimburse for telerehabilitation services. If the research shows that teleassessments and teletherapy are equivalent to clinical encounters, it is more likely that insurers and Medicare will cover telerehabilitation services.

  Teletrauma

Telemedicine can be utilized to improve the efficiency and effectiveness of the delivery of care in a trauma environment. Examples include:

Telemedicine for trauma triage: using telemedicine, trauma specialists can interact with personnel on the scene of a mass casualty or disaster situation, via the internet using mobile devices, to determine the severity of injuries. They can provide clinical assessments and determine whether those injured must be evacuated for necessary care. Remote trauma specialists can provide the same quality of clinical assessment and plan of care as a trauma specialist located physically with the patient.[17]

Telemedicine for intensive care unit (ICU) rounds: Telemedicine is also being used in some trauma ICUs to reduce the spread of infections. Rounds are usually conducted at hospitals across the country by a team of approximately ten or more people to include attending physicians, fellows, residents and other clinicians. This group usually moves from bed to bed in a unit discussing each patient. This aids in the transition of care for patients from the night shift to the morning shift, but also serves as an educational experience for new residents to the team. A new approach features the team conducting rounds from a conference room using a video-conferencing system. The trauma attending, residents, fellows, nurses, nurse practitioners, and pharmacists are able to watch a live video stream from the patient’s bedside. They can see the vital signs on the monitor, view the settings on the respiratory ventilator, and/or view the patient’s wounds. Video-conferencing allows the remote viewers two-way communication with clinicians at the bedside.[18]

Telemedicine for trauma education: some trauma centers are delivering trauma education lectures to hospitals and health care providers worldwide using video conferencing technology. Each lecture provides fundamental principles, firsthand knowledge and evidenced-based methods for critical analysis of established clinical practice standards, and comparisons to newer advanced alternatives. The various sites collaborate and share their perspective based on location, available staff, and available resources.[19]

Telemedicine in the trauma operating room: trauma surgeons are able to observe and consult on cases from a remote location using video conferencing. This capability allows the attending to view the residents in real time. The remote surgeon has the capability to control the camera (pan, tilt and zoom) to get the best angle of the procedure while at the same time providing expertise in order to provide the best possible care to the patient.[20]

  Specialist care delivery

Telemedicine can facilitate specialty care delivered by primary care physicians according to a controlled study of the treatment of hepatitis C.[21] Various specialties are contributing to telemedicine, in varying degrees.

  Telecardiology

ECGs, or electrocardiographs, can be transmitted using telephone and wireless. Willem Einthoven, the inventor of the ECG, actually did tests with transmission of ECG via telephone lines. This was because the hospital did not allow him to move patients outside the hospital to his laboratory for testing of his new device. In 1906 Einthoven came up with a way to transmit the data from the hospital directly to his lab.[22]

  Teletransmission of ECG using methods indigenous to Asia

One of the oldest known telecardiology systems for teletransmissions of ECGs was established in Gwalior, India in 1975 at GR Medical college by Dr. Ajai Shanker, Dr. S. Makhija, P.K. Mantri using an indegenous technique for the first time in India.

This system enabled wireless transmission of ECG from the moving ICU van or the patients home to the central station in ICU of the department of Medicine. Transmission using wireless was done using frequency modulation which eliminated noise. Transmission was also done through telephone lines. The ECG output was connected to the telephone input using a modulator which converted ECG into high frequency sound. At the other end a demodulator reconverted the sound into ECG with a good gain accuracy. The ECG was converted to sound waves with a frequency varying from 500 Hz to 2500 Hz with 1500 Hz at baseline.

This system was also used to monitor patients with pacemakers in remote areas. The central control unit at the ICU was able to correctly interpret arrhythmia. This technique helped medical aid reach in remote areas.[23]

In addition, electronic stethoscopes can be used as recording devices, which is helpful for purposes of telecardiology. There are many examples of successful telecardiology services worldwide.

In Pakistan three pilot projects in telemedicine was initiated by the Ministry of IT & Telecom, Government of Pakistan (MoIT) through the Electronic Government Directorate in collaboration with Oratier Technologies (a pioneer company within Pakistan dealing with healthcare and HMIS) and PakDataCom (a bandwidth provider). Three hub stations through were linked via the Pak Sat-I communications satellite, and four districts were linked with another hub. A 312 Kb link was also established with remote sites and 1 Mbit/s bandwidth was provided at each hub. Three hubs were established: the Mayo Hospital (the largest hospital in Asia), JPMC Karachi and Holy Family Rawalpindi. These 12 remote sites were connected and on average of 1,500 patients being treated per month per hub. The project was still running smoothly after two years.[24]

  Telepsychiatry

Telepsychiatry, another aspect of telemedicine, also utilizes videoconferencing for patients residing in underserved areas to access psychiatric services. It offers wide range of services to the patients and providers, such as consultation between the psychiatrists, educational clinical programs, diagnosis and assessment, medication therapy management, and routine followup meetings.[25]

As of 2011, the following are some of the model programs and projects which are deploying telepsychiatry in rural areas in the United States:
1. University of Colorado Health Sciences Center (UCHSC) supports two programs for American Indian and Alaskan Native populations

a. The Center for Native American Telehealth and Tele-education (CNATT) and
b. Telemental Health Treatment for American Indian Veterans with Post-traumatic Stress Disorder (PTSD)

2. Military Psychiatry, Walter Reed Army Medical Center.

Links for several sites related to telemedicine, telepsychiatry policy, guidelines, and networking are available at the website for the American Psychiatric Association.[26]

There has also been a recent trend towards Video CBT sites with the recent endorsement and support of CBT by the National Health Service (NHS) in the United Kingdom. [27]

In April 2012, a Manchester based Video CBT pilot project was launched to provide live video therapy sessions for those with depression, anxiety, and stress related conditions called InstantCBT [28] The site supported at launch a variety of video platforms (including Skype, GChat, Yahoo, MSN as well as bespoke) [29]and was aimed at lowering the waiting times for mental health patients.

  Teleradiology

  A CT exam displayed through teleradiology

Teleradiology is the ability to send radiographic images (x-rays, CT, MR, PET/CT, SPECT/CT, MG, US...) from one location to another.[30] For this process to be implemented, three essential components are required, an image sending station, a transmission network, and a receiving-image review station. The most typical implementation are two computers connected via the Internet. The computer at the receiving end will need to have a high-quality display screen that has been tested and cleared for clinical purposes. Sometimes the receiving computer will have a printer so that images can be printed for convenience.

The teleradiology process begins at the image sending station. The radiographic image and a modem or other connection are required for this first step. The image is scanned and then sent via the network connection to the receiving computer.

Today's high-speed broadband based Internet enables the use of new technologies for teleradiology : the image reviewer can now have access to distant servers in order to view an exam. Therefore, they do not need particular workstations to view the images ; a standard Personal Computer (PC) and Digital Subscriber Line (DSL) connection is enough to reach keosys central server. No particular software is necessary on the PC and the images can be reached from wherever in the world.

Teleradiology is the most popular use for telemedicine and accounts for at least 50% of all telemedicine usage.

  Telepathology

Telepathology is the practice of pathology at a distance. It uses telecommunications technology to facilitate the transfer of image-rich pathology data between distant locations for the purposes of diagnosis, education, and research.[31][32] Performance of telepathology requires that a pathologist selects the video images for analysis and the rendering diagnoses. The use of "television microscopy", the forerunner of telepathology, did not require that a pathologist have physical or virtual "hands-on" involvement is the selection of microscopic fields-of-view for analysis and diagnosis.

A pathologist, Ronald S. Weinstein,M.D., coined the term "telepathology" in 1986. In an editorial in a medical journal, Weinstein outlined the actions that would be needed to create remote pathology diagnostic services.[33] He, and his collaborators, published the first scientific paper on robotic telepathology.[34] Weinstein was also granted the first U.S. patents for robotic telepathology systems and telepathology diagnostic networks.[35] Dr. Weinstein is known to many as the "father of telepathology".[36] In Norway, Eide and Nordrum implemented the first sustainable clinical telepathology service in 1989.[37] This is still in operation, decades later. A number of clinical telepathology services have benefited many thousands of patients in North America, Europe, and Asia.

Telepathology has been successfully used for many applications including the rendering histopathology tissue diagnoses, at a distance, for education, and for research. Although digital pathology imaging, including virtual microscopy, is the mode of choice for telepathology services in developed countries, analog telepathology imaging is still used for patient services in some developing countries.

  Teledermatology

Teledermatology is a subspecialty in the medical field of dermatology and probably one of the most common applications of telemedicine and e-health.[38] In teledermatology, telecommunication technologies are used to exchange medical information (concerning skin conditions and tumours of the skin) over a distance using audio, visual and data communication. Applications comprise health care management such as diagnoses, consultation and treatment as well as (continuous) education.[39]

The dermatologists Perednia and Brown were the first to coin the term "teledermatology" in 1995. In a scientific publication, they described the value of a teledermatologic service in a rural area underserved by dermatologists.[40]

  Teledentistry

Teledentistry is the use of information technology and telecommunications for dental care, consultation, education, and public awareness in the same manner as telehealth and telemedicine.

  Tele-audiology

Tele-audiology is the utilization of telehealth to provide audiological services and may include the full scope of audiological practice.

This term was first used by Dr Gregg Givens in 1999 in reference to a system being developed at East Carolina University in North Carolina, USA. The first Internet audiological test was accomplished in 2000 by Givens, Balch and Keller.

The first Transatlantic teleaudiology test was performed in April 2009 when Dr James Hall tested a patient in South Africa from Dallas.

  Licensure

  U.S. licensing and regulatory issues

Restrictive licensure laws in the United States require a practitioner to obtain a full license to deliver telemedicine care across state lines. Typically, states with restrictive licensure laws also have several exceptions (varying from state to state) that may release an out-of-state practitioner from the additional burden of obtaining such a license. A number of States require practitioners who seek compensation to frequently deliver interstate care to acquire a full license.

If a practitioner serves several states, obtaining this license in each state could be an expensive and time-consuming proposition. Even if the practitioner never practices medicine face-to-face with a patient in another state, he/she still must meet a variety of other individual state requirements, including paying substantial licensure fees, passing additional oral and written examinations, and traveling for interviews.

Regulations concerning the practice of telemedicine vary from state to state.[41] Physicians who will be prescribing over the Internet to patients should mandate strict controls on their practice to insure that they stay compliant with the various State Medical Board Regulations concerning Internet Prescribing.[42]

  Advanced and experimental services

  Telesurgery

Remote surgery (also known as telesurgery) is the ability for a doctor to perform surgery on a patient even though they are not physically in the same location. It is a form of telepresence. Remote surgery combines elements of robotics, cutting edge communication technology such as high-speed data connections and elements of management information systems. While the field of robotic surgery is fairly well established, most of these robots are controlled by surgeons at the location of the surgery.

Remote surgery is essentially advanced telecommuting for surgeons, where the physical distance between the surgeon and the patient is immaterial. It promises to allow the expertise of specialized surgeons to be available to patients worldwide, without the need for patients to travel beyond their local hospital.[43]

  Enabling technologies

  Videotelephony

Videotelephony comprises the technologies for the reception and transmission of audio-video signals by users at different locations, for communication between people in real-time.[44]

At the dawn of the technology, videotelephony also included image phones which would exchange still images between units every few seconds over conventional POTS-type telephone lines, essentially the same as slow scan TV systems.

Currently videotelephony is particularly useful to the deaf and speech-impaired who can use them with sign language and also with a video relay service, and well as to those with mobility issues or those who are located in distant places and are in need of telemedical or tele-educational services.

  Health information technology

Health information technology (HIT) provides the umbrella framework to describe the comprehensive management of health information across computerized systems and its secure exchange between consumers, providers, government and quality entities, and insurers. Health information technology (HIT) is in general increasingly viewed as the most promising tool for improving the overall quality, safety and efficiency of the health delivery system (Chaudhry et al., 2006). Broad and consistent utilization of HIT will:

  • Improve health care quality;
  • Prevent medical errors;
  • Reduce health care costs;
  • Increase administrative efficiencies
  • Decrease paperwork; and
  • Expand access to affordable care.

Interoperable HIT will improve individual patient care, but it will also bring many public health benefits including:

  • Early detection of infectious disease outbreaks around the country;
  • Improved tracking of chronic disease management; and
  • Evaluation of health care based on value enabled by the collection of de-identified price and quality information that can be compared.

  See also

  References

  1. ^ a b c Sachpazidis, Ilias Image and Medical Data Communication Protocols for Telemedicine and Teleradiology (dissertation), Department of Computer Science, Technical University of Darmstadt, Germany, 10 July 2008.
  2. ^ a b American Telemedicine Association. Telemedicine/Telehealth Terminology, American Telemedicine Association website, Washington, D.C. Retrieved August 21, 2011.
  3. ^ About Telehealth: Telehealth Definition, Canadian Telehealth Forum. Retrieved from Coach: Canada's Health Teleinformatics Association website on August 21, 2011.
  4. ^ Did You Know? New Insights Into A World That Is Full of Astonishing Stories and Astounding Facts, Reader's Digest, Reader's Digest Association Limited, 1990, pg.189, ISBN 0-276-42014-4, ISBN 978-0-276-42014-6.
  5. ^ Nakajima, I.; Sastrokusumo, U.; Mishra, S.K.; Komiya, R.; Malik, A.Z.; Tanuma, T. The Asia Pacific Telecommunity's Telemedicine Activities, IEEE Xplore.com website, 17-19 Aug. 2006, pp. 280 - 282, ISBN 0-7803-9704-5, doi:10.1109/HEALTH.2006.246471
  6. ^ George R. Schwartz, C. Gene Cayten; George R. Schwartz (editor). Principles and Practice of Emergency Medicine, Volume 2, Lea & Febiger, 1992, pg.3202, ISBN 0-8121-1373-X, ISBN 978-0-8121-1373-0.
  7. ^ http://www.psqh.com/barriers-to-telemedicine-limit-patient-access-to-quality-care.html
  8. ^ Van't Haaff, Corey (March/April 2009). "Virtually On-sight". Just for Canadian Doctors. pp. 22. http://www.justforcanadiandoctors.com/pastissues/JFCD2009/JFCD-Mar-Apr2009.pdf. 
  9. ^ What Is Telemedicine?
  10. ^ W. John Blyth. "Telecommunications, Concepts, Development, and Management", Second Edition, Glencoe/McCgraw-Hill Company,1990, pp.280-282.
  11. ^ Nurses Happier Using Telecare, Says International Survey, eHealth Insider website, 15 June 2005, retrieved 2009-04-04;
  12. ^ Angaran, DM. "Telemedicine and Telepharmacy: Current Status and Future Implications", American Journal of Health-System Pharmacy, 1999 Jul 15; Vol. 56: 1405-26
  13. ^ Dennis Clifton, G.; Byer, Heather; Heaton, Kristi; Haberman, Deborah J.; and Gill, Harbir. "Provision of Pharmacy Services to Underserved Populations Via Remote Dispensing and Two-Way Videoconferencing." American Journal of Health-System Pharmacy. 2003 Dec 15; Vol. 60:2577-82
  14. ^ Traynor, Kate. "Navy takes Telepharmacy Worldwide", American Journal of Health-System Pharmacy. 2010 Jul 15; Vol. 67:1134-36
  15. ^ E-health care information systems: an introduction for students and professionals, John Wiley and Sons, 2005, p. 219, ISBN 978-0-7879-6618-8 
  16. ^ Lisa Keaton; Linda L. Pierce; Victoria Steiner; Karen Lance. "An E-rehabilitation Team Helps Caregivers Deal with Stroke". The Internet Journal of Allied Health Sciences and Practice (Ijahsp.nova.edu) 2.4. ISSN 1540-580X. http://ijahsp.nova.edu/articles/vol2num4/pierce-keaton.htm. Retrieved 2011-03-26. 
  17. ^ . http://www.emergencymgmt.com/disaster/Advanced-First-Responder-and.html. 
  18. ^ . http://www.hoise.com/vmw/09/articles/vmw/LV-VM-01-09-10.html. 
  19. ^ . http://www.utahtelehealth.net/education/ems_trauma.html. 
  20. ^ . http://www.nbcmiami.com/news/local/UM-Doctors-Use-Tele-133650778.html. 
  21. ^ Arora, Sanjeev; Karla Thornton, Glen Murata, Paulina Deming, Summers Kalishman, Denise Dion, Brooke Parish, Thomas Burke, Wesley Pak, Jeffrey Dunkelberg, Martin Kistin, John Brown, Steven Jenkusky, Miriam Komaromy, Clifford Qualls (2011-06). "Outcomes of Treatment for Hepatitis C Virus Infection by Primary Care Providers". New England Journal of Medicine: 110601140030042. DOI:10.1056/NEJMoa1009370. ISSN 0028-4793. http://www.nejm.org/doi/full/10.1056/NEJMoa1009370. Retrieved 2011-06-02. 
  22. ^ Telecardiology.
  23. ^ "Teletransmission of ECG Waveform: An Ingenious Low Priced Technique", Indian Heart Journal, 1982, Vol.34, No.6.
  24. ^ Pakistan telemedicine
  25. ^ Hoffman, Jan. When Your Therapist Is Only a Click Away, New York Times, September 25, 2011, pg. ST1. Also published September 23, 2011 online at www.nytimes.com.
  26. ^ American Psychiatric Association
  27. ^ NHS Choices
  28. ^ InstantCBT
  29. ^ InstantCBT Requirements Page
  30. ^ Kontaxakis, George; Visvikis, Dimitris; Ohl, Roland; Sachpazidis, Ilias; Suarez, Juan Pablo; Selby, Boris Peter; et al.: "Integrated Telemedicine Applications and Services for Oncological Positron Emission Tomography", Oncology Reports, Vol.15: 1091–1100, 2006
  31. ^ Weinstein, RS; Graham, AM; Richter, LC; Barker, GP; Krupinski, EA; Lopez, AM; Yagi, Y; Gilbertson, JR et al. (2009), "Overview of telepathology, virtual microscopy and whole slide imagining: Prospects for the future.", Hum Pathol 40: 1057–1069 
  32. ^ Kumar, S (2009), Kumar S, Dunn BE (editors), ed., "Telepathology: An Audit", In: Telepathology (Springer-Verlag Berlin Heidelberg): 225–229 
  33. ^ Weinstein, RS (1986), "Prospect for telepatholgy (Editorial)", Hum Pathol 17: 443-434 
  34. ^ Weinstein, RS; Bloom, KJ (1987), "Telepathology and the networking of pathology diagnostic services.", Arch Path Lab Med 111: 646–652 
  35. ^ Kayser, K; Szymas, J; Weinstein (1999), "Telepathology: Telecommunications, Electronic Education and Publication in Pathology", Springer, NY: 1–186 
  36. ^ http://www.union.edu/N/DS/s.php?s=8942
  37. ^ Nordrum, I; Engum, B; Rinde, E`; et al (1991), "Remote frozen section service: A telepathology project to northern Norway.", Hum Pathol 1991: 514–518 
  38. ^ http://www.atmeda.org/icot/sigtelederm.htm
  39. ^ Wooton et al. 2005 Roy soc of med press; Wurm et al. 2007 JDDG; Burg et al. 2005 Teledermatology
  40. ^ Perednia, Brown 1995 Bull Med Libr Assoc
  41. ^ Information Provided for Physicians: Doctors Seeking a Medical Licensing Service, MedLicense.com website.
  42. ^ MedLicense.com - Practical Advise for Physicians Who Are Involved In Telemedicine, MedLicense.com website.
  43. ^ IST's Media Collection, Interface Surgical Technologies website. Retrieved 21 August 2011.
  44. ^ McGraw-Hill Concise Encyclopedia of Engineering. Videotelephony, McGraw-Hill, 2002. Retrieved from the FreeDictionary.com website, January 9, 2010

  Further reading

  External links

   
               

 

All translations of Telemedicine


sensagent's content

  • definitions
  • synonyms
  • antonyms
  • encyclopedia

Dictionary and translator for handheld

⇨ New : sensagent is now available on your handheld

   Advertising ▼

sensagent's office

Shortkey or widget. Free.

Windows Shortkey: sensagent. Free.

Vista Widget : sensagent. Free.

Webmaster Solution

Alexandria

A windows (pop-into) of information (full-content of Sensagent) triggered by double-clicking any word on your webpage. Give contextual explanation and translation from your sites !

Try here  or   get the code

SensagentBox

With a SensagentBox, visitors to your site can access reliable information on over 5 million pages provided by Sensagent.com. Choose the design that fits your site.

Business solution

Improve your site content

Add new content to your site from Sensagent by XML.

Crawl products or adds

Get XML access to reach the best products.

Index images and define metadata

Get XML access to fix the meaning of your metadata.


Please, email us to describe your idea.

WordGame

The English word games are:
○   Anagrams
○   Wildcard, crossword
○   Lettris
○   Boggle.

Lettris

Lettris is a curious tetris-clone game where all the bricks have the same square shape but different content. Each square carries a letter. To make squares disappear and save space for other squares you have to assemble English words (left, right, up, down) from the falling squares.

boggle

Boggle gives you 3 minutes to find as many words (3 letters or more) as you can in a grid of 16 letters. You can also try the grid of 16 letters. Letters must be adjacent and longer words score better. See if you can get into the grid Hall of Fame !

English dictionary
Main references

Most English definitions are provided by WordNet .
English thesaurus is mainly derived from The Integral Dictionary (TID).
English Encyclopedia is licensed by Wikipedia (GNU).

Copyrights

The wordgames anagrams, crossword, Lettris and Boggle are provided by Memodata.
The web service Alexandria is granted from Memodata for the Ebay search.
The SensagentBox are offered by sensAgent.

Translation

Change the target language to find translations.
Tips: browse the semantic fields (see From ideas to words) in two languages to learn more.

last searches on the dictionary :

3630 online visitors

computed in 0.078s

   Advertising ▼

I would like to report:
section :
a spelling or a grammatical mistake
an offensive content(racist, pornographic, injurious, etc.)
a copyright violation
an error
a missing statement
other
please precise:

Advertize

Partnership

Company informations

My account

login

registration

   Advertising ▼

AMD-2500 General Examination Camera Dentistry Dermatology Telemedicine CLEAN APR (287.0 USD)

Commercial use of this term

Guide to Medical Informatics, the Internet and Telemedicine (3.97 USD)

Commercial use of this term

SHL Telemedicine CardioBeeper CB-12/12 Monitor handheld Trans-Telephonic ECG (75.99 USD)

Commercial use of this term

Telemedicine: A Guide to Assessing Telecommunications in Health Care (3.97 USD)

Commercial use of this term

Telemedicine and Telehealth: Principles, Policies, Performance and Pitfalls - Da (104.4 USD)

Commercial use of this term

AMD-2500 Telemedicine General Exam Camera (1500.0 USD)

Commercial use of this term

Home Healthcare: Wired and Ready for Telemedicine (402.34 USD)

Commercial use of this term

The Impact of Telemedicine on Health Care Management NE (138.65 USD)

Commercial use of this term

Telemedicine: Opportunities and Developments in Member States: Report on the Sec (7.15 USD)

Commercial use of this term

Telemedicine: What the Future Holds When You're Ill (3.97 USD)

Commercial use of this term

Telemedicine for Improving Access to Health Care in Low-Resotelemedicine for ... (169.93 USD)

Commercial use of this term

Corscience CorBELT 1Channel ECG Event Recorder for Telemedicine (1199.0 USD)

Commercial use of this term

Telemedicine and Telehealth: Principles, Policies, Performance and Pitfalls (138.2 USD)

Commercial use of this term

Telemedicine and Telehealth: Principles, Policies, Perf (141.25 USD)

Commercial use of this term

The Impact of Telemedicine on Health Care Management (135.62 USD)

Commercial use of this term

NEW Telemedicine by Paperback Book (English) Free Shipping (28.81 USD)

Commercial use of this term

Telemedicine Technologies NEW by United States Congre (16.84 USD)

Commercial use of this term