» 
Arabic Bulgarian Chinese Croatian Czech Danish Dutch English Estonian Finnish French German Greek Hebrew Hindi Hungarian Icelandic Indonesian Italian Japanese Korean Latvian Lithuanian Malagasy Norwegian Persian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swedish Thai Turkish Vietnamese
Arabic Bulgarian Chinese Croatian Czech Danish Dutch English Estonian Finnish French German Greek Hebrew Hindi Hungarian Icelandic Indonesian Italian Japanese Korean Latvian Lithuanian Malagasy Norwegian Persian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swedish Thai Turkish Vietnamese

definition - desviación estándar

definition of Wikipedia

   Advertizing ▼

synonyms - desviación estándar

desviación estándar (n.f.)

desviación normal

analogical dictionary

   Advertizing ▼

Wikipedia

Desviación estándar

                   

La desviación estándar o desviación típica (denotada con el símbolo σ o s, dependiendo de la procedencia del conjunto de datos) es una medida de centralización o dispersión para variables de razón (ratio o cociente) y de intervalo, de gran utilidad en la estadística descriptiva.

Se define como la raíz cuadrada de la varianza. Junto con este valor, la desviación típica es una medida (cuadrática) que informa de la media de distancias que tienen los datos respecto de su media aritmética, expresada en las mismas unidades que la variable.

Para conocer con detalle un conjunto de datos, no basta con conocer las medidas de tendencia central, sino que necesitamos conocer también la desviación que presentan los datos en su distribución respecto de la media aritmética de dicha distribución, con objeto de tener una visión de los mismos más acorde con la realidad al momento de describirlos e interpretarlos para la toma de decisiones.

Contenido

  Formulación Muestral

La varianza representa la media aritmética de las desviaciones con respecto a la media que son elevadas al cuadrado.

Si atendemos a la colección completa de datos (la población en su totalidad) obtenemos la varianza poblacional; y si por el contrario prestamos atención sólo a una muestra de la población, obtenemos en su lugar la varianza muestral. Las expresiones de estas medidas son las que aparecen a continuación donde nos explican mejor el texto.

Expresión de la varianza muestral:

 {S_X^2} = \frac{ \sum\limits_{i=1}^n \left( X_i - \overline{X} \right) ^ 2 }{n}

Segunda forma de calcular la varianza muestral:

 {S_X^2} = \frac{ \sum\limits_{i=1}^n X_i^2}{n} - \overline{X}^2

demostración:

 \frac{ \sum\limits_{i=1}^n \left( X_i - \overline{X} \right) ^ 2 }{n} = 
\frac{ \sum\limits_{i=1}^n (X_i^2 + \overline{X}^2 -2X_i \overline{X})}{n} =
\frac{ \sum\limits_{i=1}^n X_i^2 }{n} + \frac{ \sum\limits_{i=1}^n \overline{X}^2 }{n} - \frac{ \sum\limits_{i=1}^n 2X_i \overline{X}}{n} = 
\frac{ \sum\limits_{i=1}^n X_i^2 }{n} + \frac{ \overline{X}^2 \sum\limits_{i=1}^n 1 }{n} - \frac{ 2 \overline{X} \sum\limits_{i=1}^n X_i  }{n}

podemos observar que como

 \frac{ \sum\limits_{i=1}^n 1 }{n} = 1 (sumamos n veces 1 y luego dividimos por n)

y como

 \frac{ \sum\limits_{i=1}^n X_i  }{n} = \overline{X}

obtenemos

 \frac{ \sum\limits_{i=1}^n X_i^2 }{n} + \overline{X}^2 - 2 \overline{X} \overline{X} =
 \frac{ \sum\limits_{i=1}^n X_i^2}{n} - \overline{X}^2

Expresión de la cuasivarianza muestral (estimador insesgado de la varianza poblacional):

 {S_X^2} = \frac{ \sum\limits_{i=1}^n \left( X_i - \overline{X} \right) ^ 2 }{n-1}

Expresión de la varianza poblacional:

 {\sigma^2} = \frac{ \sum\limits_{i=1}^N \left( X_i - {\mu} \right) ^ 2 }{N}

donde {\mu\,} es el valor medio de {X_i\,}

Expresión de la desviación estándar poblacional:

 \sqrt{{\sigma^2}} =\sqrt{{\frac{ \sum\limits_{i=1}^N \left( X_i - {\mu} \right) ^ 2 }{N}}}

El término desviación estándar fue incorporado a la estadística por Karl Pearson en 1894.

Por la formulación de la varianza podemos pasar a obtener la desviación estándar, tomando la raíz cuadrada positiva de la varianza. Así, si efectuamos la raíz de la varianza muestral, obtenemos la desviación típica muestral; y si por el contrario, efectuamos la raíz sobre la varianza poblacional, obtendremos la desviación típica poblacional.

  Desviaciones estándar en una distribución normal.

Expresión de la desviación estándar muestral:

 \sqrt{s^2} =\sqrt{{ \frac{ \sum\limits_{i=1}^n \left( x_i - \overline{x} \right) ^ 2 }{n-1}}}

También puede ser tomada como

S = \sqrt{\frac{a-s^2/n}{n-1}}

con a como \sum_{i=1}^n x_i^2 y s como \sum_{i=1}^n x_i

Además se puede tener una mejor tendencia de medida al desarrollar las fórmulas indicadas pero se tiene que tener en cuenta la media, mediana y moda.

  Interpretación y aplicación

La desviación estándar es una medida del grado de dispersión de los datos con respecto al valor promedio. Dicho de otra manera, la desviación estándar es simplemente el "promedio" o variación esperada con respecto a la media aritmética.

Por ejemplo, las tres muestras (0, 0, 14, 14), (0, 6, 8, 14) y (6, 6, 8, 8) cada una tiene una media de 7. Sus desviaciones estándar muestrales son 8,08; 5,77 y 1,15 respectivamente. La tercera muestra tiene una desviación mucho menor que las otras dos porque sus valores están más cerca de 7.

La desviación estándar puede ser interpretada como una medida de incertidumbre. La desviación estándar de un grupo repetido de medidas nos da la precisión de éstas. Cuando se va a determinar si un grupo de medidas está de acuerdo con el modelo teórico, la desviación estándar de esas medidas es de vital importancia: si la media de las medidas está demasiado alejada de la predicción (con la distancia medida en desviaciones estándar), entonces consideramos que las medidas contradicen la teoría. Esto es coherente, ya que las mediciones caen fuera del rango de valores en el cual sería razonable esperar que ocurrieran si el modelo teórico fuera correcto. La desviación estándar es uno de tres parámetros de ubicación central; muestra la agrupación de los datos alrededor de un valor central (la media o promedio).

  Desglose

La desviación estándar (DS/DE), también llamada desviación típica, es una medida de dispersión usada en estadística que nos dice cuánto tienden a alejarse los valores concretos del promedio en una distribución. De hecho, específicamente, la desviación estándar es "el promedio del cuadrado de la distancia de cada punto respecto del promedio". Se suele representar por una S o con la letra sigma, \sigma^{}_{}.

La desviación estándar de un conjunto de datos es una medida de cuánto se desvían los datos de su media. Esta medida es más estable que el recorrido y toma en consideración el valor de cada dato.

  Distribución de probabilidad continua

Es posible calcular la desviación estándar de una variable aleatoria continua como la raíz cuadrada de la integral

{\sigma}^2 = \int_{-\infty}^\infty {(x - \mu)}^2 f(x) dx

donde

\mu = \int_{-\infty}^\infty x f(x) dx

  Distribución de probabilidad discreta

La DS es la raíz cuadrada de la varianza de la distribución de probabilidad discreta

\sigma^2 = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n
 \left( x_i - \overline{x} \right) ^ 2

Así la varianza es la media de los cuadrados de las diferencias entre cada valor de la variable y la media aritmética de la distribución.

Aunque esta fórmula es correcta, en la práctica interesa realizar inferencias poblacionales, por lo que en el denominador en vez de n, se usa n-1 (Corrección de Bessel) Esta ocurre cuando la media de muestra se utiliza para centrar los datos, en lugar de la media de la población. Puesto que la media de la muestra es una combinación lineal de los datos, el residual a la muestra media se extiende más allá del número de grados de libertad por el número de ecuaciones de restricción - en este caso una. Dado esto a la muestra así obtenida de una muestra sin el total de la población se le aplica esta corrección con la formula desviación estándar muestral. Cuando los casos tomados son iguales al total de la población se aplica la fórmula de desviación estándar poblacional.

s^2 = \frac{ \sum_{i=1}^n \left( x_i - \overline{x} \right) ^ 2 }{n-1}

También hay otra función más sencilla de realizar y con menos riesgo de tener equivocaciones :

s^2 = \frac{ \sum_{i=1}^n x_i^2 - n\overline{x}^2}{n-1}

tomado con fines de aclaracion de Frederich Bessel wikipedia ver inglés

  Ejemplo

Aquí se muestra cómo calcular la desviación estándar de un conjunto de datos. Los datos representan la edad de los miembros de un grupo de niños: { 4, 1, 11, 13, 2, 7 }

1. Calcular el promedio o media aritmética \overline{x}.

\overline{x}=\frac{1}{N}\sum_{i=1}^N x_i.

En este caso, N = 6 porque hay seis datos:

x_1 = 4\,\!
x_2 = 1\,\!
x_3 = 11\,\!
x_4 = 13\,\!
x_5 = 2\,\!
x_6 = 7\,\!

i = número de datos para sacar desviación estándar

\overline{x}=\frac{1}{6}\sum_{i=1}^6 x_i       Sustituyendo N por 6
\overline{x}=\frac{1}{6} \left ( x_1 + x_2 + x_3 + x_4 + x_5 + x_6 \right )
\overline{x}=\frac{1}{6} \left ( 4 + 1 + 11 + 13 + 2 + 7 \right )
\overline{x}= 6,33   Este es el promedio.


2. Calcular la desviación estándar \sigma\,\!

\sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^N (x_i - \overline{x})^2}
\sigma = \sqrt{\frac{1}{5} \sum_{i=1}^6 (x_i - \overline{x})^2}       Sustituyendo N - 1 por 5; ( 6 - 1 )
\sigma = \sqrt{\frac{1}{5} \sum_{i=1}^6 (x_i - 6,33)^2}       Sustituyendo \overline{x} por 6,33


\sigma = \sqrt{\frac{1}{5} \left [ (4 - 6,33)^2 + (1 - 6,33)^2 + (11 - 6,33)^2 + (13 - 6,33)^2 +(2 - 6,33)^2 + (7 - 6,33)^2 \right ] }
\sigma = \sqrt{\frac{1}{5} \left [ (-2,33)^2 + (-5,33)^2 + 4,67^2 + 6,67^2 + (-4,33)^2 + 0,67^2 \right ] }
\sigma = \sqrt{\frac{1}{5} \left ( 5,43 + 28,4 + 21,8 + 44,5 + 18,7 + 0,449 \right ) }
\sigma = \sqrt{\frac{119,28}{5}}
\sigma = \sqrt{23,86}
\sigma = 4,88\,\!   Éste es el valor de la desviación estándar.

  Véase también

  Enlaces externos

   
               

 

All translations of desviación estándar


sensagent's content

  • definitions
  • synonyms
  • antonyms
  • encyclopedia

  • definición
  • sinónimo

Dictionary and translator for handheld

⇨ New : sensagent is now available on your handheld

   Advertising ▼

sensagent's office

Shortkey or widget. Free.

Windows Shortkey: sensagent. Free.

Vista Widget : sensagent. Free.

Webmaster Solution

Alexandria

A windows (pop-into) of information (full-content of Sensagent) triggered by double-clicking any word on your webpage. Give contextual explanation and translation from your sites !

Try here  or   get the code

SensagentBox

With a SensagentBox, visitors to your site can access reliable information on over 5 million pages provided by Sensagent.com. Choose the design that fits your site.

Business solution

Improve your site content

Add new content to your site from Sensagent by XML.

Crawl products or adds

Get XML access to reach the best products.

Index images and define metadata

Get XML access to fix the meaning of your metadata.


Please, email us to describe your idea.

WordGame

The English word games are:
○   Anagrams
○   Wildcard, crossword
○   Lettris
○   Boggle.

Lettris

Lettris is a curious tetris-clone game where all the bricks have the same square shape but different content. Each square carries a letter. To make squares disappear and save space for other squares you have to assemble English words (left, right, up, down) from the falling squares.

boggle

Boggle gives you 3 minutes to find as many words (3 letters or more) as you can in a grid of 16 letters. You can also try the grid of 16 letters. Letters must be adjacent and longer words score better. See if you can get into the grid Hall of Fame !

English dictionary
Main references

Most English definitions are provided by WordNet .
English thesaurus is mainly derived from The Integral Dictionary (TID).
English Encyclopedia is licensed by Wikipedia (GNU).

Copyrights

The wordgames anagrams, crossword, Lettris and Boggle are provided by Memodata.
The web service Alexandria is granted from Memodata for the Ebay search.
The SensagentBox are offered by sensAgent.

Translation

Change the target language to find translations.
Tips: browse the semantic fields (see From ideas to words) in two languages to learn more.

last searches on the dictionary :

FALACIA · inminente · Gelibolu · paraban · TILAPIA COFFEA · FUSION · efecto · LUTO · Diadema · carabea ·
5353 online visitors

computed in 0.062s

I would like to report:
section :
a spelling or a grammatical mistake
an offensive content(racist, pornographic, injurious, etc.)
a copyright violation
an error
a missing statement
other
please precise:

Advertize

Partnership

Company informations

My account

login

registration

   Advertising ▼