1.a dense crowd of people
2.the property of a body that causes it to have weight in a gravitational field
3.the property of something that is great in magnitude"it is cheaper to buy it in bulk" "he received a mass of correspondence" "the volume of exports"
4.an ill-structured collection of similar things (objects or people)
5.the common people generally"separate the warriors from the mass" "power to the people"
6.a body of matter without definite shape"a huge ice mass"
7.(often followed by `of') a large number or amount or extent"a batch of letters" "a deal of trouble" "a lot of money" "he made a mint on the stock market" "see the rest of the winners in our huge passel of photos" "it must have cost plenty" "a..."
1.a service conducted in a house of worship"don't be late for church"
2.(Roman Catholic Church and Protestant Churches) the celebration of the Eucharist
3.a sequence of prayers constituting the Christian Eucharistic rite"the priest said Mass"
4.a musical setting for a Mass"they played a Mass composed by Beethoven"
1.formed of separate units gathered into a mass or whole"aggregate expenses include expenses of all divisions combined for the entire year" "the aggregated amount of indebtedness"
2.unusually large in scope"a large-scale attack on AIDS is needed"
1.join together into a mass or collect or form a mass"Crowds were massing outside the palace"
1.a large number or amount"made lots of new friends" "she amassed stacks of newspapers"
Advertizing ▼
MassMass (mȧs), n. [OE. masse, messe, AS. mæsse. LL. missa, from L. mittere, missum, to send, dismiss: cf. F. messe. In the ancient churches, the public services at which the catechumens were permitted to be present were called missa catechumenorum, ending with the reading of the Gospel. Then they were dismissed with these words : “Ite, missa est” [sc. ecclesia], the congregation is dismissed. After that the sacrifice proper began. At its close the same words were said to those who remained. So the word gave the name of Mass to the sacrifice in the Catholic Church. See Missile, and cf. Christmas, Lammas, Mess a dish, Missal.]
1. (R. C. Ch.) The sacrifice in the sacrament of the Eucharist, or the consecration and oblation of the host.
2. (Mus.) The portions of the Mass usually set to music, considered as a musical composition; -- namely, the Kyrie, the Gloria, the Credo, the Sanctus, and the Agnus Dei, besides sometimes an Offertory and the Benedictus.
Canon of the Mass. See Canon. -- High Mass, Mass with incense, music, the assistance of a deacon, subdeacon, etc. -- Low Mass, Mass which is said by the priest throughout, without music. -- Mass bell, the sanctus bell. See Sanctus. -- Mass book, the missal or Roman Catholic service book.
MassMass (?), v. i. [imp. & p. p. Massed (?); p. pr. & vb. n. Massing.] To celebrate Mass. [Obs.] Hooker.
MassMass, n. [OE. masse, F. masse, L. massa; akin to Gr. � a barley cake, fr. � to knead. Cf. Macerate.]
1. A quantity of matter cohering together so as to make one body, or an aggregation of particles or things which collectively make one body or quantity, usually of considerable size; as, a mass of ore, metal, sand, or water.
If it were not for these principles, the bodies of the earth, planets, comets, sun, and all things in them, would grow cold and freeze, and become inactive masses. Sir I. Newton.
A deep mass of continual sea is slower stirred
To rage. Savile.
2. (Phar.) A medicinal substance made into a cohesive, homogeneous lump, of consistency suitable for making pills; as, blue mass.
3. A large quantity; a sum.
All the mass of gold that comes into Spain. Sir W. Raleigh.
He had spent a huge mass of treasure. Sir J. Davies.
4. Bulk; magnitude; body; size.
This army of such mass and charge. Shak.
5. The principal part; the main body.
Night closed upon the pursuit, and aided the mass of the fugitives in their escape. Jowett (Thucyd.).
6. (Physics) The quantity of matter which a body contains, irrespective of its bulk or volume.
☞ Mass and weight are often used, in a general way, as interchangeable terms, since the weight of a body is proportional to its mass (under the same or equal gravitative forces), and the mass is usually ascertained from the weight. Yet the two ideas, mass and weight, are quite distinct. Mass is the quantity of matter in a body; weight is the comparative force with which it tends towards the center of the earth. A mass of sugar and a mass of lead are assumed to be equal when they show an equal weight by balancing each other in the scales.
Blue mass. See under Blue. -- Mass center (Geom.), the center of gravity of a triangle. -- Mass copper, native copper in a large mass. -- Mass meeting, a large or general assembly of people, usually a meeting having some relation to politics. -- The masses, the great body of the people, as contrasted with the higher classes; the populace.
MassMass, v. t. To form or collect into a mass; to form into a collective body; to bring together into masses; to assemble.
But mass them together and they are terrible indeed. Coleridge.
Advertizing ▼
definition of Wikipedia
bags of, deal, dozens, gobs, greater part, heap, heap of, heaps, heaps of, host, loads, lots, myriad, oodles, piles, rafts, scads, scores, slews, stacks, thousands of, tons, wads, lashings (informal)
accumulation, batch, body, bulk, chunk, church, cohort, collection, crowd, crush, deal, flock, good deal, great deal, hatful, heap, hoi polloi, holy communion, hunk, jam, lot, lump, magnitude, majority, masses, mass of people, mess, mickle, mint, mob, mound, mountain, muckle, multitude, passel, peck, people, piece, pile, plenty, pot, press, quantity, quite a little, raft, service, sight, size, slew, spate, stack, sum, the great unwashed, throng, tidy sum, volume, wad, weight, worship
Analysis, Mass Spectrum • Blastocyst Inner Cell Mass • Body Mass Index • Chromatography, Gas-Mass Spectrometry • Coin mass NOS • ESI Mass Spectrometry • Electrospray Ionization Mass Spectrometry • Extinction, Mass • Fast Atom Bombardment Mass Spectrometry • Fast Atom Bombardment Mass Spectroscopy • Gas Chromatography-Mass Spectrometry • High Mass • Inner Cell Mass of Blastocyst • Inner Cell Mass, Blastocyst • Localized swelling, mass and lump of skin and subcutaneous tissue • Localized swelling, mass and lump, head • Localized swelling, mass and lump, lower limb • Localized swelling, mass and lump, multiple sites • Localized swelling, mass and lump, neck • Localized swelling, mass and lump, trunk • Localized swelling, mass and lump, unspecified • Localized swelling, mass and lump, upper limb • Low Mass • Lung mass NOS • Mass Behavior • Mass Casualties • Mass Casualty Incidents • Mass Chest X-Ray • Mass Chest Xray • Mass Extinction • Mass Immunization • Mass Media • Mass Screening • Mass Spectrometry • Mass Spectrometry, Fast Atom Bombardment • Mass Spectrometry, Matrix-Assisted Laser Desorption-Ionization • Mass Spectrometry, Secondary Ion • Mass Spectrometry-Gas Chromatography • Mass Spectrometry-Mass Spectrometry • Mass Spectroscopy, Fast Atom Bombardment • Mass Spectroscopy, Matrix-Assisted Laser Desorption-Ionization • Mass Spectroscopy, Secondary Ion • Mass Vaccination • Mass card • Mass-production • Priestley's mass • Red Cell Mass • Secondary Ion Mass Spectrometry • Secondary Ion Mass Spectrometry Microscopy • Secondary Ion Mass Spectroscopy • Secondary Ion Mass Spectroscopy Microscopy • Spectrometry, Mass, Electrospray Ionization • Spectrometry, Mass, Fast Atom Bombardment • Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization • Spectrometry, Mass, Secondary Ion • Spectrometry, Mass-Gas Chromatography • Spectroscopy, Mass, Fast Atom Bombardment • Spectroscopy, Mass, Matrix-Assisted Laser Desorption-Ionization • Spectroscopy, Mass, Secondary Ion • Spectrum Analysis, Mass-Gas Chromatography • Stent's mass • Tandem Mass Spectrometry • Weapon of Mass Destruction • Weapons of Mass Destruction • a mass of • air mass • atomic mass • atomic mass unit • body mass index • center of mass • centre of mass • conservation of mass • critical mass • dry mass • economy of mass production • gravitational mass • high mass • ice mass • inertia mass • inertial mass • land mass • law of conservation of mass • law of mass action • low mass • mass action • mass action theory • mass and lump breast • mass and lump intra-abdominal or pelvic • mass balance • mass book • mass communication • mass communications • mass culture • mass defect • mass deficiency • mass demonstration • mass education • mass energy • mass hysteria • mass lobby • mass marketing • mass media • mass medium • mass meeting • mass memory • mass murder • mass murderer • mass noun • mass number • mass of fallen rocks • mass of people • mass of rocks • mass production • mass rapid transit • mass spectrograph • mass spectrometer • mass spectroscopic • mass spectroscopy • mass spectrum • mass storage • mass tourism • mass transit • mass unemployment • mass unit • mass-action principle • mass-consumption product • mass-energy equivalence • mass-produce • mass-produced • mass-produced article • mass-produced product • mass-production • mass-spectrometric • midnight mass • relative atomic mass • relative molecular mass • relativistic mass • requiem mass • rest mass • sex chromosome mass • the (mass) media • the mass media • weapon of mass destruction • weapons of mass destruction
mass communications • mass education • mass media • mass production • mass tourism • weapon of mass destruction
In physics, mass (from Greek μᾶζα "barley cake, lump (of dough)"), more specifically inertial mass, can be defined as a quantitative measure of an object's resistance to the change of its speed. In addition to this, gravitational mass can be described as a measure of magnitude of the gravitational force which is
when interacting with a second object. The SI unit of mass is the kilogram (kg).
In everyday usage, mass is often referred to as weight, the units of which are often taken to be kilograms (for instance, a person may state that their weight is 75 kg). In scientific use, however, the term weight refers to a different, yet related, property of matter. Weight is the gravitational force acting on a given body—which differs depending on the gravitational pull of the opposing body (e.g. a person's weight on Earth vs on the Moon) — while mass is an intrinsic property of that body that never changes. In other words, an object's weight depends on its environment, while its mass does not. On the surface of the Earth, an object with a mass of 50 kilograms weighs 491 Newtons; on the surface of the Moon, the same object still has a mass of 50 kilograms but weighs only 81.5 Newtons. Restated in mathematical terms, on the surface of the Earth, the weight W of an object is related to its mass m by W = mg, where g is the Earth's gravitational field strength, equal to about 9.81 m/s^{2}.
The inertial mass of an object determines its acceleration in the presence of an applied force. According to Newton's second law of motion, if a body of fixed mass M is subjected to a force F, its acceleration α is given by F/M. A body's mass also determines the degree to which it generates or is affected by a gravitational field. If a first body of mass M_{A} is placed at a distance r from a second body of mass M_{B}, each body experiences an attractive force F_{G} whose magnitude is F_{G} = GM_{A}M_{B}/r^{2}, where G is the universal constant of gravitation, equal to 6.67×10^{−11} N·m^{2}·kg^{−2}. This is sometimes referred to as gravitational mass.^{[note 1]} Repeated experiments since the 17th century have demonstrated that inertial and gravitational mass are equivalent; since 1915, this observation has been entailed a priori in the equivalence principle of general relativity.
Special relativity shows that rest mass (or invariant mass) and rest energy are essentially equivalent, via the well-known relationship (E = mc^{2}). This same equation also connects relativistic mass and "relativistic energy" (total system energy). The latter two "relativistic" mass and energy are concepts that are related to their "rest" counterparts, but they do not have the same value as their rest counterparts in systems where there is a net momentum. In order to deduce any of these four quantities from any of the others, in any system which has a net momentum, an equation that takes momentum into account is needed. Mass (so long as the type and definition of mass is agreed upon) is a conserved quantity over time. From the viewpoint of any single unaccelerated observer, mass can neither be created or destroyed, and special relativity does not change this understanding. All unaccelerated observers agree on the amount of invariant mass in closed systems at all times, and although different observers may not agree with each other on how much relativistic mass is present in any such system, all agree that the amount does not change over time.
Macroscopically, mass is associated with matter— although matter, unlike mass, is poorly defined in science. On the sub-atomic scale, not only fermions, the particles often associated with matter, but also some bosons, the particles that act as force carriers, have rest mass. Another problem for easy definition is that much of the rest mass of ordinary matter derives from the invariant mass contributed to matter by particles and kinetic energies which have no rest mass themselves (only 1% of the rest mass of matter is accounted for by the rest mass of its fermionic quarks and electrons). From a fundamental physics perspective, mass is the number describing under which the representation of the little group of the Poincaré group a particle transforms. In the Standard Model of particle physics, this symmetry is described as arising as a consequence of a coupling of particles with rest mass to a postulated additional field, known as the Higgs field.
The total mass of the observable universe is estimated at between 10^{52} kg and 10^{53} kg, corresponding to the rest mass of between 10^{79} and 10^{80} protons.
In the International System of Units (SI), mass is measured in kilograms (kg). The gram (g) is ^{1}⁄_{1000} of a kilogram. The gram was first introduced in 1795, with a definition based on the density of water (so that at the temperature of melting ice, one cubic centimeter of water would have a mass of one gram; while the meter at the time was defined as the 10,000,000th part of the distance from the Earth's equator to the North Pole). Since 1889, the kilogram has been defined as the mass of the international prototype kilogram, and as such is independent of the meter, or the properties of water. In October 2011, the 24th General Conference on Weights and Measures resolved to "take note of the intention" to redefine the kilogram in terms of the Planck constant, scheduled for 2014.
Other units are accepted for use in SI:
Outside the SI system, a variety of different mass units are used, depending on context, such as the slug (sl), the pound (lb), the Planck mass (m_{P}), and the solar mass.
In normal situations, the weight of an object is proportional to its mass, which usually makes it unproblematic to use the same unit for both concepts. However, the distinction between mass and weight becomes important for measurements with a precision better than a few percent (because of slight differences in the strength of the Earth's gravitational field at different places), and for places far from the surface of the Earth, such as in space or on other planets.
A mass can sometimes be expressed in terms of length. The mass of a very small particle may be identified with its inverse Compton wavelength (1 cm^{−1} ≈ 3.52×10^{−41} kg). The mass of a very large star or black hole may be identified with its Schwarzschild radius (1 cm ≈ 6.73×10^{24} kg).
In classical mechanics, mass has a central role in determining the behavior of bodies. Newton's second law relates the force F exerted in a body of mass M to the body's acceleration α:
Additionally, mass relates a body's momentum p to its velocity v:
and the body's kinetic energy K to its velocity:
In special relativity, relativistic mass is a formalism which accounts for relativistic effects by having the mass increase with velocity.
Since energy is dependent on reference frame (upon the observer) it is convenient to formulate the equations of physics in a way such that mass values are invariant (do not change) between observers, and so the equations are independent of the observer. For a single particle, this quantity is the rest mass; for a system of bound or unbound particles, this quantity is the invariant mass. The invariant mass M of a body is related to its energy U and the magnitude of its momentum p by
where c is the speed of light.
In physical science, one may distinguish conceptually between at least seven attributes of mass, or seven physical phenomena that can be explained using the concept of mass:^{[1]}
Inertial mass, gravitational mass, and the various other mass-related phenomena are conceptually distinct. However, every experiment to date has shown these values to be proportional, and this proportionality gives rise to the abstract concept of mass. If, in some future experiment, one of the mass-related phenomena is shown to not be proportional to the others, then that specific phenomenon will no longer be considered a part of the abstract concept of mass.
Weight, by definition, is a measure of the force which must be applied to support an object (i.e. hold it at rest) in a gravitational field. The Earth’s gravitational field causes items near the Earth to have weight. Typically, gravitational fields change only slightly over short distances, and the Earth’s field is nearly uniform at all locations on the Earth’s surface; therefore, an object’s weight changes only slightly when it is moved from one location to another, and these small changes went unnoticed through much of history. This may have given early humans the impression that weight is an unchanging, fundamental property of objects in the material world.
In the Egyptian religious illustration to the right, Anubis is using a balance scale to weigh the heart of Hunefer. A balance scale balances the force of one object’s weight against the force of another object’s weight. The two sides of a balance scale are close enough that the objects experience similar gravitational fields. Hence, if they have similar masses then their weights will also be similar. This allows the scale, by comparing weights, to also compare masses, and gives it the distinction of being one of the oldest known devices capable of measuring mass.
The concept of amount is very old and predates recorded history, so any description of the early development of this concept is speculative in nature. However, one might reasonably assume that humans, at some early era, realized that the weight of a collection of similar objects was directly proportional to the number of objects in the collection:
where w is the weight of the collection of similar objects and n is the number of objects in the collection. Proportionality, by definition, implies that two values have a constant ratio:
Consequently, historical weight standards were often defined in terms of amounts. The Romans, for example, used the carob seed (carat or siliqua) as a measurement standard. If an object’s weight was equivalent to 1728 carob seeds, then the object was said to weigh one Roman pound. If, on the other hand, the object’s weight was equivalent to 144 carob seeds then the object was said to weigh one Roman ounce (uncia). The Roman pound and ounce were both defined in terms of different sized collections of the same common mass standard, the carob seed. The ratio of a Roman ounce (144 carob seeds) to a Roman pound (1728 carob seeds) was:
This example illustrates a common occurrence in physical science: when values are related through simple fractions, there is a good possibility that the values stem from a common source.
The name atom comes from the Greek ἄτομος/átomos, α-τεμνω, which means uncuttable, something that cannot be divided further. The philosophical concept that matter might be composed of discrete units that cannot be further divided has been around for millennia. However, empirical proof and the universal acceptance of the existence of atoms didn’t occur until the early 20th century.
As the science of chemistry matured, experimental evidence for the existence of atoms came from the law of multiple proportions. When two or more elements combined to form a compound, their masses are always in a fixed and definite ratio. For example, the mass ratio of nitrogen to oxygen in nitric oxide is seven eights. Ammonia has a hydrogen to nitrogen mass ratio of three fourteenths. The fact that elemental masses combined in simple fractions implies that all elemental mass stems from a common source. In principle, the atomic mass situation is analogous to the above example of Roman mass units. The Roman pound and ounce were both defined in terms of different sized collections of carob seeds, and consequently, the two mass units were related to each other through a simple fraction. Comparatively, since all of the atomic masses are related to each other through simple fractions, then perhaps the atomic masses are just different sized collections of some common fundamental mass unit.
In 1805, the chemist John Dalton published his first table of relative atomic weights, listing six elements, hydrogen, oxygen, nitrogen, carbon, sulfur, and phosphorus, and assigning hydrogen an atomic weight of 1. And in 1815, the chemist William Prout concluded that the hydrogen atom was in fact the fundamental mass unit from which all other atomic masses were derived.
If Prout's hypothesis had proven accurate, then the abstract concept of mass, as we now know it, might never have evolved, since mass could always be defined in terms of amounts of the hydrogen atomic mass. Prout’s hypothesis; however, was found to be inaccurate in two major respects. First, further scientific advancements revealed the existence of smaller particles, such as electrons and quarks, whose masses are not related through simple fractions. And second, the elemental masses themselves were found to not be exact multiples of the hydrogen atom mass, but rather, they were near multiples. Einstein’s theory of relativity explained that when protons and neutrons come together to form an atomic nucleus, some of the mass of the nucleus is released in the form of binding energy. The more tightly bound the nucleus, the more energy is lost during formation and this binding energy loss causes the elemental masses to not be related through simple fractions.
Hydrogen, for example, with a single proton, has an atomic weight of 1.007825 u. The most abundant isotope of iron has 26 protons and 30 neutrons, so one might expect its atomic weight to be 56 times that of the hydrogen atom, but in fact, its atomic weight is only 55.9383 u, which is clearly not an integer multiple of 1.007825. Prout’s hypothesis was proven inaccurate in many respects, but the abstract concepts of atomic mass and amount continue to play an influential role in chemistry, and the atomic mass unit continues to be the unit of choice for very small mass measurements.
When the French invented the metric system in the late 18th century, they used an amount to define their mass unit. The kilogram was originally defined to be equal in mass to the amount of pure water contained in a one-liter container. This definition, however, was inadequate for the precision requirements of modern technology, and the metric kilogram was redefined in terms of a man-made platinum-iridium bar known as the international prototype kilogram.
Active gravitational mass is a property of the mass of an object that produces a gravitational field in the space surrounding the object, and these gravitational fields govern large-scale structures in the Universe. Gravitational fields hold the galaxies together. They cause clouds of gas and dust to coalesce into stars and planets. They provide the necessary pressure for nuclear fusion to occur within stars. And they determine the orbits of various objects within the Solar System. Since gravitational effects are all around us, it is impossible to pin down the exact date when humans first discovered gravitational mass. However, it is possible to identify some of the significant steps towards our modern understanding of gravitational mass and its relationship to the other mass phenomena. Some terms associated with gravitational mass and its effects are the Gaussian gravitational constant, the standard gravitational parameter and the Schwarzschild radius.
English name |
The Keplerian planets | |||
---|---|---|---|---|
Semi-major axis | Sidereal orbital period | Mass of Sun | ||
Mercury | 0.387 099 AU | 0.240 842 sidereal year | ||
Venus | 0.723 332 AU | 0.615 187 sidereal year | ||
Earth | 1.000 000 AU | 1.000 000 sidereal year | ||
Mars | 1.523 662 AU | 1.880 816 sidereal year | ||
Jupiter | 5.203 363 AU | 11.861 776 sidereal year | ||
Saturn | 9.537 070 AU | 29.456 626 sidereal year |
Johannes Kepler was the first to give an accurate description of the orbits of the planets, and by doing so; he was the first to describe gravitational mass. In 1600 AD, Kepler sought employment with Tycho Brahe and consequently gained access to astronomical data of a higher precision than any previously available. Using Brahe’s precise observations of the planet Mars, Kepler realized that the traditional astronomical methods were inaccurate in their predictions, and he spent the next five years developing his own method for characterizing planetary motion.
In Kepler’s final planetary model, he successfully described planetary orbits as following elliptical paths with the Sun at a focal point of the ellipse. The concept of active gravitational mass is an immediate consequence of Kepler's third law of planetary motion. Kepler discovered that the square of the orbital period of each planet is directly proportional to the cube of the semi-major axis of its orbit, or equivalently, that the ratio of these two values is constant for all planets in the Solar System. This constant ratio is a direct measure of the Sun's active gravitational mass, it has units of distance cubed per time squared, and is known as the standard gravitational parameter:
English name |
The Galilean moons | |||
---|---|---|---|---|
Semi-major axis | Sidereal orbital period | Mass of Jupiter | ||
Io | 0.002 819 AU | 0.004 843 sidereal year | ||
Europa | 0.004 486 AU | 0.009 722 sidereal year | ||
Ganymede | 0.007 155 AU | 0.019 589 sidereal year | ||
Callisto | 0.012 585 AU | 0.045 694 sidereal year |
In 1609, Johannes Kepler published his three rules known as Kepler's laws of planetary motion, explaining how the planets follow elliptical orbits under the influence of the Sun. On 25 August of that same year, Galileo Galilei demonstrated his first telescope to a group of Venetian merchants, and in early January of 1610, Galileo observed four dim objects near Jupiter, which he mistook for stars. However, after a few days of observation, Galileo realized that these "stars" were in fact orbiting Jupiter. These four objects (later named the Galilean moons in honor of their discoverer) were the first celestial bodies observed to orbit something other than the Earth or Sun. Galileo continued to observe these moons over the next eighteen months, and by the middle of 1611 he had obtained remarkably accurate estimates for their periods. Later, the semi-major axis of each moon was also estimated, thus allowing the gravitational mass of Jupiter to be determined from the orbits of its moons. The gravitational mass of Jupiter was found to be approximately a thousandth of the gravitational mass of the Sun.
Sometime prior to 1638, Galileo turned his attention to the phenomenon of objects falling under the influence of Earth’s gravity, and he was actively attempting to characterize these motions. Galileo was not the first to investigate Earth’s gravitational field, nor was he the first to accurately describe its fundamental characteristics. However, Galileo’s reliance on scientific experimentation to establish physical principles would have a profound effect on future generations of scientists. Galileo used a number of scientific experiments to characterize free fall motion. It is unclear if these were just hypothetical experiments used to illustrate a concept, or if they were real experiments performed by Galileo,^{[2]} but the results obtained from these experiments were both realistic and compelling. A biography by Galileo's pupil Vincenzo Viviani stated that Galileo had dropped balls of the same material, but different masses, from the Leaning Tower of Pisa to demonstrate that their time of descent was independent of their mass.^{[note 4]} In support of this conclusion, Galileo had advanced the following theoretical argument: He asked if two bodies of different masses and different rates of fall are tied by a string, does the combined system fall faster because it is now more massive, or does the lighter body in its slower fall hold back the heavier body? The only convincing resolution to this question is that all bodies must fall at the same rate.^{[3]}
A later experiment was described in Galileo’s Two New Sciences published in 1638. One of Galileo’s fictional characters, Salviati, describes an experiment using a bronze ball and a wooden ramp. The wooden ramp was "12 cubits long, half a cubit wide and three finger-breadths thick" with a straight, smooth, polished groove. The groove was lined with "parchment, also smooth and polished as possible". And into this groove was placed "a hard, smooth and very round bronze ball". The ramp was inclined at various angles to slow the acceleration enough so that the elapsed time could be measured. The ball was allowed to roll a known distance down the ramp, and the time taken for the ball to move the known distance was measured. The time was measured using a water clock described as follows:
Galileo found that for an object in free fall, the distance that the object has fallen is always proportional to the square of the elapsed time:
Galileo Galilei died in Arcetri, Italy (near Florence), on 8 January 1642. Galileo had shown that objects in free fall under the influence of the Earth’s gravitational field have a constant acceleration, and Galileo’s contemporary, Johannes Kepler, had shown that the planets follow elliptical paths under the influence of the Sun’s gravitational mass. However, the relationship between Galileo’s gravitational field and Kepler’s gravitational mass wasn’t comprehended during Galileo’s lifetime.
Earth's Moon | Mass of Earth | |
---|---|---|
Semi-major axis | Sidereal orbital period | |
0.002 569 AU | 0.074 802 sidereal year | |
Earth's Gravity | Earth's Radius | |
9.806 65 m s^{-2} | 6 375 km |
Robert Hooke has published his concept of gravitational forces in 1674, stating that, all Cœlestial Bodies whatsoever, have an attraction or gravitating power towards their own Centers [and] they do also attract all the other Cœlestial Bodies that are within the sphere of their activity. He further states that gravitational attraction increases by how much the nearer the body wrought upon is to their own center.^{[5]} In a correspondence of 1679–1680 between Robert Hooke and Isaac Newton, Hooke conjectures that gravitational forces might decrease according to the double of the distance between the two bodies.^{[6]} Hooke urged Newton, who was a pioneer in the development of calculus, to work through the mathematical details of Keplerian orbits to determine if Hooke’s hypothesis was correct. Newton’s own investigations verified that Hooke was correct, but due to personal differences between the two men, Newton chose not to reveal this to Hooke. Isaac Newton kept quiet about his discoveries until 1684, at which time he told a friend, Edmond Halley, that he had solved the problem of gravitational orbits, but had misplaced the solution in his office.^{[7]} After being encouraged by Halley, Newton decided to develop his ideas about gravity and publish all of his findings. In November 1684, Isaac Newton sent a document to Edmund Halley, now lost but presumed to have been titled De motu corporum in gyrum (Latin: "On the motion of bodies in an orbit").^{[8]} Halley presented Newton’s findings to the Royal Society of London, with a promise that a fuller presentation would follow. Newton later recorded his ideas in a three book set, entitled Philosophiæ Naturalis Principia Mathematica (Latin: "Mathematical Principles of Natural Philosophy"). The first was received by the Royal Society on 28 April 1685–6, the second on 2 March 1686–7, and the third on 6 April 1686–7. The Royal Society published Newton’s entire collection at their own expense in May 1686–7.^{[9]}
Isaac Newton had bridged the gap between Kepler’s gravitational mass and Galileo’s gravitational acceleration, and proved the following relationship:
where g is the apparent acceleration of a body as it passes through a region of space where gravitational fields exist, μ is the gravitational mass (standard gravitational parameter) of the body causing gravitational fields, and R is the radial coordinate (the distance between the centers of the two bodies).
By finding the exact relationship between a body's gravitational mass and its gravitational field, Newton provided a second method for measuring gravitational mass. The mass of the Earth can be determined using Kepler’s method (from the orbit of Earth’s Moon), or it can be determined by measuring the gravitational acceleration on the Earth’s surface, and multiplying that by the square of the Earth’s radius. The mass of the Earth is approximately three millionths of the mass of the Sun. To date, no other accurate method for measuring gravitational mass has been discovered.^{[10]}
Newton's cannonball was a thought experiment used to bridge the gap between Galileo’s gravitational acceleration and Kepler’s elliptical orbits. It appeared in Newton's 1728 book A Treatise of the System of the World. According to Galileo’s concept of gravitation, a dropped stone falls with constant acceleration down towards the Earth. However, Newton explains that when a stone is thrown horizontally (meaning sideways or perpendicular to Earth’s gravity) it follows a curved path. “For a stone projected is by the pressure of its own weight forced out of the rectilinear path, which by the projection alone it should have pursued, and made to describe a curve line in the air; and through that crooked way is at last brought down to the ground. And the greater the velocity is with which it is projected, the farther it goes before it falls to the Earth.”^{[11]}
Newton further reasons that if an object were “projected in an horizontal direction from the top of a high mountain” with sufficient velocity, “it would reach at last quite beyond the circumference of the Earth, and return to the mountain from which it was projected.” Newton’s thought experiment is illustrated in the image to the right. A cannon on top of a very high mountain shoots a cannon ball in a horizontal direction. If the speed is low, it simply falls back on Earth (paths A and B). However, if the speed is equal to or higher than some threshold (orbital velocity), but not high enough to leave Earth altogether (escape velocity), it will continue revolving around Earth along an elliptical orbit (C and D).
Newton's cannonball illustrated the relationship between the Earth’s gravitational mass and its gravitational field; however, a number of other ambiguities still remained. Robert Hooke had asserted in 1674 that: "all Celestial Bodies whatsoever, have an attraction or gravitating power towards their own Centers", but Hooke had neither explained why this gravitating attraction was unique to celestial bodies, nor had he explained why the attraction was directed towards the center of a celestial body.
To answer these questions, Newton introduced the entirely new concept that gravitational mass is “universal”: meaning that every object has gravitational mass, and therefore, every object generates a gravitational field. Newton further assumed that the strength of each object’s gravitational field would decrease according to the square of the distance to that object. With these assumptions in mind, Newton calculated what the overall gravitational field would be if a large collection of small objects were formed into a giant spherical body. Newton found that a giant spherical body (like the Earth or Sun, with roughly uniform density at each given radius), would have a gravitational field which was proportional to the total mass of the body,^{[12]} and inversely proportional to the square of the distance to the body’s center.^{[13]}
Newton's concept of universal gravitational mass is illustrated in the image to the left. Every piece of the Earth has gravitational mass and every piece creates a gravitational field directed towards that piece. However, the overall effect of these many fields is equivalent to a single powerful field directed towards the center of the Earth. The apple behaves as if a single powerful gravitational field were accelerating it towards the Earth’s center.
Newton’s concept of universal gravitational mass puts gravitational mass on an equal footing with the traditional concepts of weight and amount. For example, the ancient Romans had used the carob seed as a weight standard. The Romans could place an object with an unknown weight on one side of a balance scale and place carob seeds on the other side of the scale, increasing the number of seeds until the scale was balanced. If an object’s weight was equivalent to 1728 carob seeds, then the object was said to weigh one Roman pound.
According to Newton’s theory of universal gravitation, each carob seed produces gravitational fields. Therefore, if one were to gather an immense number of carob seeds and form them into an enormous sphere, then the gravitational field of the sphere would be proportional to the number of carob seeds in the sphere. Hence, it should be theoretically possible to determine the exact number of carob seeds that would be required to produce a gravitational field similar to that of the Earth or Sun. And since the Roman weight units were all defined in terms of carob seeds, then knowing the Earth’s, or Sun's “carob seed mass” would allow one to calculate the mass in Roman pounds, or Roman ounces, or any other Roman unit.
This possibility extends beyond Roman units and the carob seed. The British avoirdupois pound, for example, was originally defined to be equal to 7,000 barley grains. Therefore, if one could determine the Earth’s “barley grain mass” (the number of barley grains required to produce a gravitational field similar to that of the Earth), then this would allow one to calculate the Earth’s mass in avoirdupois pounds. Also, the original kilogram was defined to be equal in mass to a liter of pure water (the modern kilogram is defined by the man-made international prototype kilogram). Thus, the mass of the Earth in kilograms could theoretically be determined by ascertaining how many liters of pure water (or international prototype kilograms) would be required to produce gravitational fields similar to those of the Earth. In fact, it is a simple matter of abstraction to realize that any traditional mass unit can theoretically be used to measure gravitational mass.
Measuring gravitational mass in terms of traditional mass units is simple in principle, but extremely difficult in practice. According to Newton’s theory all objects produce gravitational fields and it is theoretically possible to collect an immense number of small objects and form them into an enormous gravitating sphere. However, from a practical standpoint, the gravitational fields of small objects are extremely weak and difficult to measure. And if one were to collect an immense number of objects, the resulting sphere would probably be too large to construct on the surface of the Earth, and too expensive to construct in space. Newton’s books on universal gravitation were published in the 1680s, but the first successful measurement of the Earth’s mass in terms of traditional mass units, the Cavendish experiment, didn’t occur until 1797, over a hundred years later. Cavendish found that the Earth's density was 5.448 ± 0.033 times that of water. As of 2009, the Earth’s mass in kilograms is only known to around five digits of accuracy, whereas its gravitational mass is known to over nine significant figures.
Although inertial mass, passive gravitational mass and active gravitational mass are conceptually distinct, no experiment has ever unambiguously demonstrated any difference between them. In classical mechanics, Newton's third law implies that active and passive gravitational mass must always be identical (or at least proportional), but the classical theory offers no compelling reason why the gravitational mass has to equal the inertial mass. That it does is merely an empirical fact.
Albert Einstein developed his general theory of relativity starting from the assumption that this correspondence between inertial and (passive) gravitational mass is not accidental: that no experiment will ever detect a difference between them (the weak version of the equivalence principle). However, in the resulting theory, gravitation is not a force and thus not subject to Newton's third law, so "the equality of inertial and active gravitational mass [...] remains as puzzling as ever".^{[14]}
"Inertial mass" is the mass of an object measured by its resistance to acceleration.
To understand what the inertial mass of a body is, one begins with classical mechanics and "Newton's Laws of Motion". Later on, we will see how our classical definition of mass must be altered if we take into consideration the theory of special relativity, which is more accurate than classical mechanics. However, the implications of special relativity will not change the meaning of "mass" in any essential way.
According to Newton's second law, we say that a body has a mass m if, at any instant of time, it obeys the equation of motion
where F is the force acting on the body and α is the acceleration of the body.^{[note 5]} For the moment, we will put aside the question of what "force acting on the body" actually means.
This equation illustrates how mass relates to the inertia of a body. Consider two objects with different masses. If we apply an identical force to each, the object with a bigger mass will experience a smaller acceleration, and the object with a smaller mass will experience a bigger acceleration. We might say that the larger mass exerts a greater "resistance" to changing its state of motion in response to the force.
However, this notion of applying "identical" forces to different objects brings us back to the fact that we have not really defined what a force is. We can sidestep this difficulty with the help of Newton's third law, which states that if one object exerts a force on a second object, it will experience an equal and opposite force. To be precise, suppose we have two objects A and B, with constant inertial masses m_{X} and m_{Y}. We isolate the two objects from all other physical influences, so that the only forces present are the force exerted on X by Y, which we denote F_{XY}, and the force exerted on Y by X, which we denote F_{YX}. Newton's second law states that
where α_{X} and α_{Y} are the accelerations of X and Y, respectively. Suppose that these accelerations are non-zero, so that the forces between the two objects are non-zero. This occurs, for example, if the two objects are in the process of colliding with one another. Newton's third law then states that
and thus
Note that our requirement that α_{X} be non-zero ensures that the fraction is well-defined.
This is, in principle, how we would measure the inertial mass of an object. We choose a "reference" object and define its mass m_{Y} as (say) 1 kilogram. Then we can measure the mass of any other object in the universe by colliding it with the reference object and measuring the accelerations.
The Newtonian concept of gravitational mass rests on Newton's law of gravitation. Let us suppose we have two objects A and B, separated by a distance R_{AB}. The law of gravitation states that if A and B have gravitational masses M_{A} and M_{B} respectively, then each object exerts a gravitational force on the other, of magnitude
where G is the universal gravitational constant. The above statement may be reformulated in the following way: if g is the magnitude at a given location in a gravitational field, then the gravitational force on an object with gravitational mass M is
This is the basis by which masses are determined by weighing. In simple spring scales, for example, the force F is proportional to the displacement of the spring beneath the weighing pan, as per Hooke's law, and the scales are calibrated to take g into account, allowing the mass M to be read off. A balance measures gravitational mass; only the spring scale measures weight.
The equivalence of inertial and gravitational masses is sometimes referred to as the Galilean equivalence principle or weak equivalence principle. The most important consequence of this equivalence principle applies to freely falling objects. Suppose we have an object with inertial and gravitational masses m and M respectively. If the only force acting on the object comes from a gravitational field g, combining Newton's second law and the gravitational law yields the acceleration
This says that the ratio of gravitational to inertial mass of any object is equal to some constant K if and only if all objects fall at the same rate in a given gravitational field. This phenomenon is referred to as the 'universality of free-fall'. (In addition, the constant K can be taken to be 1 by defining our units appropriately.)
The first experiments demonstrating the universality of free-fall were conducted by Galileo. It is commonly stated that Galileo obtained his results by dropping objects from the Leaning Tower of Pisa, but this is most likely apocryphal; actually, he performed his experiments with balls rolling down inclined planes. Increasingly precise experiments have been performed, such as those performed by Loránd Eötvös,^{[15]} using the torsion balance pendulum, in 1889. As of 2008^{[update]}, no deviation from universality, and thus from Galilean equivalence, has ever been found, at least to the precision 10^{−12}. More precise experimental efforts are still being carried out.
The universality of free-fall only applies to systems in which gravity is the only acting force. All other forces, especially friction and air resistance, must be absent or at least negligible. For example, if a hammer and a feather are dropped from the same height through the air on Earth, the feather will take much longer to reach the ground; the feather is not really in free-fall because the force of air resistance upwards against the feather is comparable to the downward force of gravity. On the other hand, if the experiment is performed in a vacuum, in which there is no air resistance, the hammer and the feather should hit the ground at exactly the same time (assuming the acceleration of both objects towards each other, and of the ground towards both objects, for its own part, is negligible). This can easily be done in a high school laboratory by dropping the objects in transparent tubes that have the air removed with a vacuum pump. It is even more dramatic when done in an environment that naturally has a vacuum, as David Scott did on the surface of the Moon during Apollo 15.
A stronger version of the equivalence principle, known as the Einstein equivalence principle or the strong equivalence principle, lies at the heart of the general theory of relativity. Einstein's equivalence principle states that within sufficiently small regions of space-time, it is impossible to distinguish between a uniform acceleration and a uniform gravitational field. Thus, the theory postulates that the force acting on a massive object caused by a gravitational field is a result of the object's tendency to move in a straight line (in other words its inertia) and should therefore be a function of its inertial mass and the strength of the gravitational field.
The term mass in special relativity usually refers to the rest mass of the object, which is the Newtonian mass as measured by an observer moving along with the object. The invariant mass is another name for the rest mass of single particles. However, the more general invariant mass (calculated with a more complicated formula) may also be applied to systems of particles in relative motion, and because of this, is usually reserved for systems which consist of widely separated high-energy particles. The invariant mass of systems is the same for all observers and inertial frames, and cannot be destroyed, and is thus conserved, so long as the system is closed. In this case, "closure" implies that an idealized boundary is drawn around the system, and no mass/energy is allowed across it.
In as much as energy is conserved in closed systems in relativity, the mass of a system is also a quantity which is conserved: this means it does not change over time, even as some types of particles are converted to others. For any given observer, the mass of any system is separately conserved and cannot change over time, just as energy is separately conserved and cannot change over time. The incorrect popular idea that mass may be converted to (massless) energy in relativity is because some matter particles may in some cases be converted to types of energy which are not matter (such as light, kinetic energy, and the potential energy in magnetic, electric, and other fields). However, this confuses "matter" (a non-conserved and ill-defined thing) with mass (which is well-defined and is conserved). Even if not considered "matter," all types of energy still continue to exhibit mass in relativity. Thus, mass and energy do not change into one another in relativity; rather, both are names for the same thing, and neither mass nor energy appear without the other. "Matter" particles may not be conserved in reactions in relativity, but closed-system mass always is.
For example, a nuclear bomb in an idealized super-strong box, sitting on a scale, would in theory show no change in mass when detonated (although the inside of the box would become much hotter). In such a system, the mass of the box would change only if energy were allowed to escape from the box as light or heat. However, in that case, the removed energy would take its associated mass with it. Letting heat out of such a system is simply a way to remove mass. Thus, mass, like energy, cannot be destroyed, but only moved from one place to another.^{[16]}
In bound systems, the binding energy must (often) be subtracted from the mass of the unbound system, simply because this energy has mass, and this mass is subtracted from the system when it is given off, at the time it is bound. Mass is not conserved in this process because the system is not closed during the binding process. A familiar example is the binding energy of atomic nuclei, which appears as other types of energy (such as gamma rays) when the nuclei are formed, and (after being given off) results in nuclides which have less mass than the free particles (nucleons) of which they are composed.
The term relativistic mass is also used, and this is the total quantity of energy in a body or system (divided by c^{2}). The relativistic mass (of a body or system of bodies) includes a contribution from the kinetic energy of the body, and is larger the faster the body moves, so unlike the invariant mass, the relativistic mass depends on the observer's frame of reference. However, for given single frames of reference and for closed systems, the relativistic mass is also a conserved quantity.
Because the relativistic mass is proportional to the energy, it has gradually fallen into disuse among physicists.^{[17]} There is disagreement over whether the concept remains pedagogically useful.^{[18]}^{[19]}^{[20]}
In general relativity, the equivalence principle is any of several related concepts dealing with the equivalence of gravitational and inertial mass. At the core of this assertion is Albert Einstein's idea that the gravitational force as experienced locally while standing on a massive body (such as the Earth) is the same as the pseudo-force experienced by an observer in a non-inertial (accelerated) frame of reference.
However, it turns out that it is impossible to find an objective general definition for the concept of invariant mass in general relativity. At the core of the problem is the non-linearity of the Einstein field equations, which makes it impossible to write the gravitational field energy as part of the Stress–energy tensor in a way that is invariant for all observers. For a given observer, this can be achieved by the Stress–energy–momentum pseudotensor.^{[21]}
In classical mechanics, the inert mass of a particle appears in the Euler–Lagrange equation as a parameter m,
After quantization, replacing the position vector x with a wave function, the parameter m appears in the kinetic energy operator,
In the ostensibly covariant^{[disambiguation needed ]} (relativistically invariant) Dirac equation, and in natural units, this becomes
Where the "mass" parameter m is now simply a constant associated with the quantum described by the wave function ψ.
In the Standard Model of particle physics as developed in the 1960s, there is the proposal that this term arises from the coupling of the field ψ to an additional field Φ, the so-called Higgs field. In the case of fermions, the Higgs mechanism results in the replacement of the term mψ in the Lagrangian with . This shifts the explanandum of the value for the mass of each elementary particle to the value of the unknown couplings G_{ψ}. The discovery of a massive Higgs boson would be regarded as a strong confirmation of this theory. But there is indirect evidence for the reality of the Electroweak symmetry breaking as described by the Higgs mechanism, and the non-existence of the Higgs boson would indicate a "Higgsless" description of this mechanism.
sensagent's content
Dictionary and translator for handheld
New : sensagent is now available on your handheld
Advertising ▼
Webmaster Solution
Alexandria
A windows (pop-into) of information (full-content of Sensagent) triggered by double-clicking any word on your webpage. Give contextual explanation and translation from your sites !
SensagentBox
With a SensagentBox, visitors to your site can access reliable information on over 5 million pages provided by Sensagent.com. Choose the design that fits your site.
Business solution
Improve your site content
Add new content to your site from Sensagent by XML.
Crawl products or adds
Get XML access to reach the best products.
Index images and define metadata
Get XML access to fix the meaning of your metadata.
Please, email us to describe your idea.
Lettris
Lettris is a curious tetris-clone game where all the bricks have the same square shape but different content. Each square carries a letter. To make squares disappear and save space for other squares you have to assemble English words (left, right, up, down) from the falling squares.
boggle
Boggle gives you 3 minutes to find as many words (3 letters or more) as you can in a grid of 16 letters. You can also try the grid of 16 letters. Letters must be adjacent and longer words score better. See if you can get into the grid Hall of Fame !
English dictionary
Main references
Most English definitions are provided by WordNet .
English thesaurus is mainly derived from The Integral Dictionary (TID).
English Encyclopedia is licensed by Wikipedia (GNU).
Copyrights
The wordgames anagrams, crossword, Lettris and Boggle are provided by Memodata.
The web service Alexandria is granted from Memodata for the Ebay search.
The SensagentBox are offered by sensAgent.
Translation
Change the target language to find translations.
Tips: browse the semantic fields (see From ideas to words) in two languages to learn more.
last searches on the dictionary :
computed in 0.078s
Advertising ▼