» 
Arabic Bulgarian Chinese Croatian Czech Danish Dutch English Estonian Finnish French German Greek Hebrew Hindi Hungarian Icelandic Indonesian Italian Japanese Korean Latvian Lithuanian Malagasy Norwegian Persian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swedish Thai Turkish Vietnamese
Arabic Bulgarian Chinese Croatian Czech Danish Dutch English Estonian Finnish French German Greek Hebrew Hindi Hungarian Icelandic Indonesian Italian Japanese Korean Latvian Lithuanian Malagasy Norwegian Persian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swedish Thai Turkish Vietnamese

definitions - sulfur hexafluoride

sulfur hexafluoride (n.)

1.a colorless gas that is soluble in alcohol and ether; a powerful greenhouse gas widely used in the electrical utility industry

Sulfur Hexafluoride (n.)

1.(MeSH)Sulfur hexafluoride. An inert gas used mainly as a test gas in respiratory physiology. Other uses include its injection in vitreoretinal surgery to restore the vitreous chamber and as a tracer in monitoring the dispersion and deposition of air pollutants.

   Advertizing ▼

definition (more)

definition of Wikipedia

synonyms - sulfur hexafluoride

sulfur hexafluoride (n.)

sulphur hexafluoride

   Advertizing ▼

analogical dictionary

Wikipedia

Sulfur hexafluoride

                   
Sulfur hexafluoride
Identifiers
CAS number 2551-62-4 YesY
PubChem 17358 YesY
ChemSpider 16425 YesY
UNII WS7LR3I1D6 N
EC number 219-854-2
UN number 1080
KEGG D05962 N
MeSH Sulfur+hexafluoride
ChEBI CHEBI:30496 YesY
RTECS number WS4900000
ATC code V08DA05
Gmelin Reference 2752
Jmol-3D images Image 1
Properties
Molecular formula F6S
Molar mass 146.06 g mol−1
Appearance Colorless, odorless gas
Density 6.17 g/l
Boiling point

-64 °C, 209 K, -83 °F

Vapor pressure 2.9 MPa (at 21.1°C)
Structure
Crystal structure Orthorhombic, oP28
Space group Oh
Coordination
geometry
Orthogonal hexagonal
Molecular shape Octahedral
Dipole moment 0 D
Thermochemistry
Std enthalpy of
formation
ΔfHo298
−1209 kJ·mol−1[2]
Standard molar
entropy
So298
292 J·mol−1·K−1[2]
Hazards
MSDS External MSDS
S-phrases S38
NFPA 704
NFPA 704.svg
0
0
0
Related compounds
Related sulfur fluorides Disulfur decafluoride

Sulfur tetrafluoride

Related compounds Selenium hexafluoride

Sulfuryl fluoride
Tellurium hexafluoride

 N (verify) (what is: YesY/N?)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa)
Infobox references

Sulfur hexafluoride (SF6) is an inorganic, colorless, odorless, and non-flammable greenhouse gas. SF6 has an octahedral geometry, consisting of six fluorine atoms attached to a central sulfur atom. It is a hypervalent molecule. Typical for a nonpolar gas, it is poorly soluble in water but soluble in nonpolar organic solvents. It is generally transported as a liquefied compressed gas. It has a density of 6.12 g/L at sea level conditions, which is considerably higher than the density of air.

Contents

  Synthesis and reactions

SF6 can be prepared from the elements through exposure of S8 to F2. This was also the method used by the discoverers Henri Moissan and Paul Lebeau in 1901. Some other sulfur fluorides are cogenerated, but these are removed by heating the mixture to disproportionate any S2F10 (which is highly toxic) and then scrubbing the product with NaOH to destroy remaining SF4.

There is virtually no reaction chemistry for SF6. A main contribution to the inertness of SF6 is the steric hindrance of the sulfur atom, whereas its heavier group 16 counterparts, such as SeF6 are more reactive than SF6 as a result of less steric hindrance (See hydrolysis example).[3] It does not react with molten sodium, but reacts exothermically with lithium.

For example, reactions of SF6 with water to produce sulfuric acid and hydrofluoric acid (a hydrolysis reaction, which would be thermodynamically favourable) does not occur as a result of steric hindrance: SF6 + 4H2O(l) → no reaction

  Applications

Of the 8,000 tons of SF6 produced per year, most (6,000 tons) is used as a gaseous dielectric medium in the electrical industry, an inert gas for the casting of magnesium, and as an inert filling for insulated glazing windows.

  Dielectric medium

SF6 is used in the electrical industry as a gaseous dielectric medium for high-voltage circuit breakers, switchgear, and other electrical equipment, often replacing oil filled circuit breakers (OCBs) that can contain harmful PCBs. SF6 gas under pressure is used as an insulator in gas insulated switchgear (GIS) because it has a much higher dielectric strength than air or dry nitrogen. This property makes it possible to significantly reduce the size of electrical gear. This makes GIS more suitable for certain purposes such as indoor placement, as opposed to air-insulated electrical gear, which takes up considerably more room. Gas-insulated electrical gear is also more resistant to the effects of pollution and climate, as well as being more reliable in long-term operation because of its controlled operating environment. Although most of the decomposition products tend to quickly re-form SF6, arcing or corona can produce disulfur decafluoride (S2F10), a highly toxic gas, with toxicity similar to phosgene. S2F10 was considered a potential chemical warfare agent in World War II because it does not produce lacrimation or skin irritation, thus providing little warning of exposure.

SF6 is also commonly encountered as a high voltage dielectric in the high voltage supplies of particle accelerators, such as Van de Graaff generators and Pelletrons and high voltage transmission electron microscopes.

  Medical use

SF6 is used to provide a tamponade or plug of a retinal hole in retinal detachment repair operations.[4] It is inert in the vitreous chamber[5] and initially doubles its volume in 36 hours before being absorbed in the blood in 10–14 days.[6]

SF6 is used as a contrast agent for ultrasound imaging. Sulfur hexafluoride microbubbles are administered in solution through injection into a peripheral vein. These microbubbles enhance the visibility of blood vessels to ultrasound. This application has been utilized to examine the vascularity of tumours.[7]

  Tracer compound

Sulfur hexafluoride was the tracer gas used in the first roadway air dispersion model calibration; this research program was sponsored by the U.S. Environmental Protection Agency and conducted in Sunnyvale, California on U.S. Highway 101.[8] Gaseous SF6 is used as a tracer gas in short-term experiments of ventilation efficiency in buildings and indoor enclosures, and for determining infiltration rates. Two major factors recommend its use: its concentration can be measured with satisfactory accuracy at very low concentrations, and the Earth's atmosphere has a negligible concentration of SF6.

Sulfur hexafluoride was used as a non-toxic test gas in an experiment at St John's Wood tube station in London, United Kingdom on 25 March 2007.[9] The gas was released throughout the station, and monitored as it drifted around. The purpose of the experiment, which had been announced earlier in March by the Secretary of State for Transport Douglas Alexander, was to investigate how toxic gas might spread throughout London Underground stations and buildings during a terrorist attack.

It has been used successfully as a tracer in oceanography to study diapycnal mixing and air-sea gas exchange.

  Other uses

Sulfur hexafluoride is also used as a reagent for creating thrust in a closed Rankine-cycle propulsion system, reacting with solid lithium as used in the United States Navy's Mark 50 torpedo.

SF6 plasma is also used in the semiconductor industry as an etchant. SF6 breaks down in the plasma into sulfur and fluorine, the fluorine plasma performing the etching.[10]

The magnesium industry uses large amounts of SF6 as inert gas to fill casting forms.

Sulfur hexafluoride is also used to pressurize waveguides in radar systems. The gas insulates the waveguide preventing internal arcing. The same use of sulfur hexafluoride is applied in transmission waveguides of medical linear accelerators, which are used for delivery of external beam radiotherapy.

Sulfur hexafluoride has been used in electrostatic loudspeakers because of its high dielectric strength and high molecular weight.

Sulfur hexafluoride was used to fill Nike Air bags in all of their shoes from 1990-1996.

  Greenhouse gas

  Mauna Loa sulfur hexafluoride timeseries.

According to the Intergovernmental Panel on Climate Change, SF6 is the most potent greenhouse gas that it has evaluated, with a global warming potential of 22,800[11] times that of CO2 when compared over a 100-year period. Measurements of SF6 show that its global average mixing ratio has increased by about 0.2 ppt per year to over 7 ppt.[12] Sulfur hexafluoride is also extremely long-lived, is inert in the troposphere and stratosphere and has an estimated atmospheric lifetime of 800–3200 years.[13] SF6 is very stable (for countries reporting their emissions to the UNFCCC, a GWP of 23,900 for SF6 was suggested at the third Conference of the Parties: GWP used in Kyoto protocol).[14] Average global SF6 concentrations increased by about seven percent per year during the 1980s and 1990s, mostly as the result of its use in the magnesium production industry, and by electrical utilities and electronics manufacturers. Given the low amounts of SF6 released compared to carbon dioxide, its overall contribution to global warming is estimated to be less than 0.2 percent.[citation needed]

In Europe, SF6 falls under the F-Gas directive which ban or control its usage for several applications. Since 1 January 2006, SF6 is banned as a tracer gas and in all applications except high-voltage switchgear.[15]

  Physiological effects and precautions

As with all gasses, the density of SF6 affects the resonance frequencies of the vocal tract, thus changing drastically the vocal sound qualities, or timbre, of those who inhale it. On the other hand, it does not affect the vibrations of the vocal folds. The density of sulfur hexafluoride is relatively high at room temperature and pressure due to the gas's large molar mass. Unlike helium, which has a molar mass of about 4 grams/mol and gives the voice a childish and "Donald Duck" quality , SF6 has a molar mass of about 146 g/mol, and the velocity of sound through the gas is 0.44 times the speed of sound in air due to the large inertia of a SF6 molecule. For comparison, the molar mass of air, which is about 80% nitrogen and 20% oxygen, is approximately 30 g/mol. Inhalation of SF6 causes a lowering of the timbre, or frequency of the formants, of the vocal tract, by contrast with inhalation of helium, which raises it.[16]

As with all gases other than mixtures containing sufficient oxygen, inhalation can result in asphyxiation, even leading to death. While seemingly unlikely, this consequence is important to keep in mind because the effect of a gas on the vocal chords is greatest when the least amount of air possible is mixed with it — the most "successful" experiments in changing vocal qualities may be among the more dangerous ones.

  Other properties

  • Thermal conductivity at STP (101.3 kPa and 0 °C) = 12.058 mW/(m.K)[17]
  • Heat capacity at constant pressure (Cp) (101.3 kPa and 21 °C) = 0.097 kJ/(mol.K)
  • Critical temperature: 45.5 °C
  • Critical pressure: 37.59 bar (3.759 MPa)[17]

  See also

  References

  1. ^ "Sulfur Hexafluoride - PubChem Public Chemical Database". The PubChem Project. USA: National Center for Biotechnology Information. http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=17358. 
  2. ^ a b Zumdahl, Steven S. (2009). Chemical Principles 6th Ed.. Houghton Mifflin Company. p. A23. ISBN 0-618-94690-X. 
  3. ^ Shriver, Atkins. Inorganic Chemistry; W. H. Freeman and Company: New York, 2010; pp 409.
  4. ^ Daniel A. Brinton, C. P. Wilkinson, George F. Hilton, Retinal detachment: principles and practice Oxford University Press, 2009 ISBN 0-19-533082-X, page 183
  5. ^ Thompson, John T. (2001). "17: Intraocular gases and techniques for air-fluid exchage". In Peyman, Gholam A.; Meffert, Stephen A.; Conway, Mandi D. et al.. Vitreoretinal Surgical Techniques. London: Martin Dunitz. p. 157. ISBN 1-85317-585-4. http://books.google.com/books?id=gEaQ0wiM7JwC&pg=PA157. Retrieved 11 November 2011. 
  6. ^ Hilton, G. F.; Das, T.; Majji, A. B.; Jalali, S. (1996). "Pneumatic retinopexy: Principles and practice". Indian Journal of Ophthalmology 44 (3): 131–143. PMID 9018990.  edit
  7. ^ Lassau N, Chami L, Benatsou B, Peronneau P, Roche A (December 2007). "Dynamic contrast-enhanced ultrasonography (DCE-US) with quantification of tumor perfusion: a new diagnostic tool to evaluate the early effects of antiangiogenic treatment". Eur Radiol 17 (Suppl 6): F89–98. DOI:10.1007/s10406-007-0233-6. PMID 18376462. 
  8. ^ C.Michael Hogan, Leda C. Patmore, Richard Venti, Gary Latshaw et al. (1973) Calibration of a line source model for air pollutant dispersal from roadways, ESL Inc., U.S. Environmental Protection Agency Technology Series, Government Printing Office, Washington, DC
  9. ^ "'Poison gas' test on Underground". BBC News. 25 March 2007. http://news.bbc.co.uk/1/hi/england/london/6492501.stm. Retrieved 2007-03-31. 
  10. ^ Y. Tzeng and T.H. Lin. "Dry Etching of Silicon Materials in SF6 Based Plasmas". http://www.eng.auburn.edu/~tzengy/Publications/Plasma%20Lab%20Publications/Dry%20etching%20of%20silicon%20materials%20in%20SF6%20based%20plasma.pdf. 
  11. ^ Intergovernmental Panel on Climate Change, Working Group 1, Climate Change 2007, Chapter 2.10.2.
  12. ^ "Mauna Loa and Global SF6". http://www.esrl.noaa.gov/gmd/hats/insitu/cats/conc/mlosf6.html. Retrieved 2011-03-06. 
  13. ^ "Atmospheric Lifetimes of Long-Lived Halogenated Species". http://www.sciencemag.org/cgi/content/abstract/sci;259/5092/194. 
  14. ^ "Climate Change 2001: Working Group I: The Scientific Basis". Intergovernmental Panel on Climate Change. 2001. http://www.grida.no/climate/ipcc_tar/wg1/248.htm. Retrieved 2007-03-31. 
  15. ^ F-gas and SF6 restrictions
  16. ^ "Physics in speech". phys.unsw.edu.au.. http://www.phys.unsw.edu.au/PHYSICS_!/SPEECH_HELIUM/speech.html. Retrieved 2008-07-20. 
  17. ^ a b "Air Liquide Gas Encyclopedia Sulfur hexafluoride". http://encyclopedia.airliquide.com/Encyclopedia.asp?GasID=34. Retrieved 2008-10-26. 

  Further reading

  External links

   
               

 

All translations of sulfur hexafluoride


sensagent's content

  • definitions
  • synonyms
  • antonyms
  • encyclopedia

Dictionary and translator for handheld

⇨ New : sensagent is now available on your handheld

   Advertising ▼

sensagent's office

Shortkey or widget. Free.

Windows Shortkey: sensagent. Free.

Vista Widget : sensagent. Free.

Webmaster Solution

Alexandria

A windows (pop-into) of information (full-content of Sensagent) triggered by double-clicking any word on your webpage. Give contextual explanation and translation from your sites !

Try here  or   get the code

SensagentBox

With a SensagentBox, visitors to your site can access reliable information on over 5 million pages provided by Sensagent.com. Choose the design that fits your site.

Business solution

Improve your site content

Add new content to your site from Sensagent by XML.

Crawl products or adds

Get XML access to reach the best products.

Index images and define metadata

Get XML access to fix the meaning of your metadata.


Please, email us to describe your idea.

WordGame

The English word games are:
○   Anagrams
○   Wildcard, crossword
○   Lettris
○   Boggle.

Lettris

Lettris is a curious tetris-clone game where all the bricks have the same square shape but different content. Each square carries a letter. To make squares disappear and save space for other squares you have to assemble English words (left, right, up, down) from the falling squares.

boggle

Boggle gives you 3 minutes to find as many words (3 letters or more) as you can in a grid of 16 letters. You can also try the grid of 16 letters. Letters must be adjacent and longer words score better. See if you can get into the grid Hall of Fame !

English dictionary
Main references

Most English definitions are provided by WordNet .
English thesaurus is mainly derived from The Integral Dictionary (TID).
English Encyclopedia is licensed by Wikipedia (GNU).

Copyrights

The wordgames anagrams, crossword, Lettris and Boggle are provided by Memodata.
The web service Alexandria is granted from Memodata for the Ebay search.
The SensagentBox are offered by sensAgent.

Translation

Change the target language to find translations.
Tips: browse the semantic fields (see From ideas to words) in two languages to learn more.

last searches on the dictionary :

5011 online visitors

computed in 0.968s

   Advertising ▼

I would like to report:
section :
a spelling or a grammatical mistake
an offensive content(racist, pornographic, injurious, etc.)
a copyright violation
an error
a missing statement
other
please precise:

Advertize

Partnership

Company informations

My account

login

registration

   Advertising ▼

1995 CRYOQUIP 1650TM SF6 GAS RECLAIMER FOR SULFUR HEXAFLUORIDE ONLY 134 HOURS (5495.0 USD)

Commercial use of this term

Concoa 400 Series Regulator CGA 590 Fitting Sulfur Hexafluoride (69.0 USD)

Commercial use of this term

Inorganic Sulfur Compounds, Including: Sulfur Hexafluoride, Disulfur Decafluo... (20.4 USD)

Commercial use of this term

Electrical Breakdown of Sulfur Hexafluoride at High Pre (93.54 USD)

Commercial use of this term

NEW Three coal mine ventilation studies using sulfur hexafluoride tracer gas by (31.9 USD)

Commercial use of this term

NEW Using sulfur hexafluoride as a gaseous tracer to study ventilation systems i (28.54 USD)

Commercial use of this term

The Natural Geochemistry of Tetrafluoromethane and Sulfur Hexafluoride: Studi... (91.76 USD)

Commercial use of this term

Electrical Breakdown of Sulfur Hexafluoride at High Pressure (90.99 USD)

Commercial use of this term